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General	notes	on	Homework
Do	not	use	Rstudio-specific	commands	in	R	chunks
◦ View()	is	not	an	R	command
◦ May	prevent	from	knitting

Only	set	working	directory	once
◦ Add	to	top	chunk with	"root.dir"

Load	all	libraries	in	the	top	chunk
Chi-squared	assumptions	refer	to	expected counts
Don't	give	yourself	more	work	than	you	have	to
Don't	make	your	hypotheses	fancy
When	to	use	median	vs.	mean	for	directional	conclusions?



Announcing	Final	Project	(25%)
Identify	a	dataset	and	ask	four	scientific	questions about	the	
data
◦ Use	any	of	the	statistical	approaches	we	have	learned	to	answer	each	
question

◦ Make	a	descriptive	figure	for	each	scientific	question



Scientific	questions
Recall	HW7:
◦ Do	PHA	levels	tend	to	differ	between	the	birds	that	received	supplemental	
carotenoids	and	those	that	did	not?	Based	on	your	results,	can	you	infer	
anything	about	immune	differences	between	birds	that	did	and	did	not	
receive	carotenoids?
◦ Use	a	Mann	Whitney	U	test	to	answer	the	scientific	question
◦ "Run	a	Mann	Whitney	U	test	on	PHA	levels	between	bird	treatments"	is	not	a	scientific	
question

◦ What	figure	might	be	good	to	make	here?
◦ What	figures	would	not	be	good	here?



Final	project	proposal
Homework	due	11/28	will	be	a	proposal
◦ Identify	your	dataset	and	give	1-2	paragraphs	of	background
◦ IN	YOUR	OWN	WORDS

◦ Pose	four	scientific	questions
◦ Explain	how	you	will	solve	each	question
◦ What	statistical	procedure	and	why

◦ Indicate	how	you	will	visualize	your	data

Around	1	written	page,	single-spaced.

3-4	sentences	total	per	question



Updated	schedule
Date Topic

10/24 Linear	modeling	I

10/31 Linear	modeling	II	and	logistic	regression

11/7 Model selection	and	evaluation

11/14 Principal Components	Analysis	(PCA)	and	clustering

11/21 Thanksgiving break

11/28 Advanced R	grabbag and/or	overflow

12/5 Advanced R	grabbag and/or	in-class	office	hours	for	final	project
Email	me	for	special	topic	requests.

12/12 Final	project	due	(by 11:59	pm	on	12/12)



Linear	Modeling
ANOVA	and	friends
Correlation
Regression
Multiple	regression



ANOVA:	Analysis	of	Variance
Used	to	compare	more	than	2 means	(among	k groups)

Ho:	All	means	are	the	same,	i.e.		𝜇1 =	𝜇2 =	… =	𝜇k
Ha:	At	least	one	mean	is	different,	i.e.	at	least	one	𝜇<1-k> differs

Why	"can't"	we	use	a	t-test?
◦ We	can	do	all	the	comparisons	and	use	a	P-value	correction
◦ ANOVA	is	preferred



ANOVA	Example
A	clinical	trial	asks	if	there	is	a	difference	in	mean	daily	calcium	intake	in	adults	with	
normal	bone	density,	adults	with	osteopenia,	and	adults	with	osteoporosis.	Each	
participant's	daily	calcium	intake	is	measured	based	on	reported	food	intake.

Is	there	a	difference	in	mean	calcium	intake	across	groups?

Normal	Bone	Density Osteopenia Osteoporosis
1200 1000 490
1000 1100 650
980 700 200
900 800 300
750 500 400
800 700 350



ANOVA	compares	sources	of	variance using	the	
F	statistic
Variance	among	groups	is	the	group	mean	square	(MSgroup)
Variance	within each	group	is	the	error	mean	square (MSerror)
◦ Pooled	sample	variance
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The	F statistic

df group	= k – 1
df	error	=	N	– k	=	∑𝑛 − 1�

�

𝑭 = 	
𝑴𝑺𝒈𝒓𝒐𝒖𝒑
𝑴𝑺𝒆𝒓𝒓𝒐𝒓

https://en.wikipedia.org/wiki/F-distribution#/media/File:F-distribution_pdf.svgWe	use	only	the	upper	tail	for	P-value



Interpreting	the	F statistic
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If	HO is	false,	F	> 1	
MSgroup >	MSerror

If	HO is	true,	F	≅ 1	
MSgroup≅ MSerror



Computing	the	F statistic

𝑿3 =	grand	mean	(mean	of	*all*	numbers)

Sum	of	squares

� 

MSerror =

dfisi
2!

dfi!

Calculate an estimate of the variance within the groups:

MSerror is like the pooled variance in a 2-sample t-test.

dfi = ni-1

Sums of squares

Error sum of squares = 

� 

SSerror = dfisi
2!

Error degrees of freedom = 

� 

dferror = dfi = ni !1( )"" = N ! k

Error Mean square for squirrels

SSerror = 19(0.558)2 + 20(0.587)2 +19(0.430)2 = 16.3

dferror = 19 + 20 + 19 = 58.

MSerror is 16.3 / 58 =0.281.

Group mean square

� 

SSgroup = ni X i ! X ( )
2

"

� 

X 
i
 is the mean of group i, and

� 

X = X
ij

N
j

!
i

!  is the overall mean.

dfgroup = k-1

� 

MSgroups =
SSgroups

dfgroups

𝑭 = 	
𝑴𝑺𝒈𝒓𝒐𝒖𝒑
𝑴𝑺𝒆𝒓𝒓𝒐𝒓

𝑴𝑺𝒆𝒓𝒓𝒐𝒓 	= 		
∑ 𝒔𝒊𝟐�� (𝒏𝒊 − 𝟏)

𝑵 − 𝒌

𝑴𝑺𝒈𝒓𝒐𝒖𝒑 	= 		
∑𝒏𝒊�
� 𝑿3𝒊 − 𝑿3 𝟐	
𝒌 − 𝟏

𝑴𝑺 =	
𝑺𝑺
𝒅𝒇

𝒔𝒊𝟐 =Standard	deviation	of	group	i

𝒅𝒇𝒊 = 𝒏𝒊 − 𝟏,	where	𝒏𝒊 =	sample	size	of	group	i

𝑿3𝒊 =	mean	of	group	i



Normal	Bone	Density Osteopenia Osteoporosis

1200 1000 490

1000 1100 650

980 700 200

900 800 300

750 500 400

800 700 350

𝑭 = 	
𝑴𝑺𝒈𝒓𝒐𝒖𝒑
𝑴𝑺𝒆𝒓𝒓𝒐𝒓

𝑴𝑺𝒆𝒓𝒓𝒐𝒓 	= 		
∑ 𝒔𝒊𝟐�� (𝒏𝒊 − 𝟏)

𝑵 − 𝒌

𝑴𝑺𝒈𝒓𝒐𝒖𝒑 	= 		
∑𝒏𝒊�
� 𝑿3𝒊 − 𝑿3 𝟐	
𝒌 − 𝟏

𝑴𝑺 =	
𝑺𝑺
𝒅𝒇

Computing	the	F statistic



Running	the	ANOVA
Ho:	Groups	have	the	same	mean	calcium	intake.
Ha:	At	least	one	group	has	a	different	calcium	intake.

data <- tibble("normal"       = c(1200, 1000, 980, 900, 750, 800),
"osteopenia"   = c(1000, 1100, 700, 800, 500, 700),
"osteoporosis" = c(490, 650, 200, 300, 400, 350))

data %>% gather(group, calcium, normal:osteoporosis) -> tidy.data

group calcium
1 normal 1200
2 normal 1000
3 normal 980
4 normal 900
5 normal 750
6 normal 800
7 osteopenia 1000
8 osteopenia 1100
9 osteopenia 700

10 osteopenia 800
11 osteopenia 500
12 osteopenia 700
...



Visualize	the	data
It	is	always the	right	idea	to	view	your	data	before	modeling	it

ggplot(tidy.data, aes(x = group, y = calcium, fill= group)) + geom_violin()
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Running	the	ANOVA
> aov(calcium ~ group, data = tidy.data)
Call:

aov(formula = calcium ~ group, data = tidy.data)

Terms:
group Residuals

Sum of Squares 944144.4 493166.7
Deg. of Freedom 2 15

Residual standard error: 181.3223
Estimated effects may be unbalanced

error



Obtaining	the	ANOVA	table
> summary( aov(calcium ~ group, data = tidy.data) )

Df Sum Sq Mean Sq F value Pr(>F) 
group 2 944144 472072 14.36 0.000328 ***
Residuals 15 493167 32878
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

error

𝑭 = 	
𝑴𝑺𝒈𝒓𝒐𝒖𝒑
𝑴𝑺𝒆𝒓𝒓𝒐𝒓𝑴𝑺𝒆𝒓𝒓𝒐𝒓 	= 		

∑ 𝒔𝒊𝟐�� 𝒅𝒇𝒊
𝑵 − 𝒌𝑴𝑺𝒈𝒓𝒐𝒖𝒑 	= 		

∑𝒏𝒊�
� 𝑿3𝒊 − 𝑿3 𝟐	
𝒌 − 𝟏

> 1-pf(14.36, 2, 15)
[1] 0.0003277806



Reports	and	conclusions
Our	P	=	0.000328,	which	is	less	than	alpha.	We	reject	the	null	
hypothesis	and	we	have	evidence	that	at	least	one	mean	
(normal	bone	density,	osteopenia,	or	osteoporosis	calcium	
intake)	differs	from	the	other.



Unplanned	comparisons	with	the	
Tukey-Kramer	Method
AKA	Tukey's	test,	Tukey's	method,	Tukey's	HSD	
(honest	significant	difference)	test

Tests	all	pairs	of	means
◦ Normal	vs.	osteopenia
◦ Normal	vs.	osteoporosis
◦ Osteopenia	vs.	osteoporosis

Roughly,	multiple	t-tests	where	FWER	is	
controlled	but	using	the	q-statistic	(similar	to	t)



Running	Tukey's	test	on	ANOVA
> TukeyHSD( aov(calcium ~ group, data = tidy.data) )

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = calcium ~ group, data = tidy.data)

$group
diff lwr upr p adj

osteopenia-normal -138.3333 -410.2534 133.5867 0.4054988
osteoporosis-normal -540.0000 -811.9200 -268.0800 0.0003238
osteoporosis-osteopenia -401.6667 -673.5867 -129.7466 0.0043335



Reports	and	conclusions,	round	2
Our	P	=	0.000328,	which	is	less	than	alpha.	We	reject	the	null	hypothesis	
and	we	have	evidence	that	at	least	one	mean	(normal	bone	density,	
osteopenia,	or	osteoporosis	calcium	intake)	differs	from	the	other.

After	running	the	post-hoc Tukey's	test,	we	find	that	osteoporosis	groups	
have	a	significantly	higher	average	calcium	intake	than	normal	groups	
(P=0.0003),	and	that	osteoporosis	groups	have	a	significantly	higher	
average	calcium	intake	than	osteopenia	groups P=0.004).	However,	we	do	
not	find	a	significant	difference	in	calcium	intake	between	normal	and	
osteopenia	groups.



ANOVA	assumptions
Samples	are	random	
Samples	are	normally	distributed
◦ Robust	to	violations	when	study	is	large

Samples	have	the	same	variance
◦ Robust	to	violations	when	study	is	balanced



Kruskal-Wallis	is	the	non-parametric	
alternative

> kruskal.test(calcium ~ as.factor(group), data = tidy.data)

Kruskal-Wallis rank sum test

data: calcium by as.factor(group)
Kruskal-Wallis chi-squared = 11.439, df = 2, p-value = 0.003281

Unless	something	is	really	really	weird,	you	"can"	use	ANOVA



Exercise	break



Correlation
Measures	the	strength	and	direction	of	the	linear	association
between	two	numeric	variables

Y

r ! 0.0 r ! 0.5 r ! "0.7 r ! 0.9

X X X X

-1 ≤ r ≤ 1



Perfect	correlations
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Variability	(error)	has	a	substantial	influence
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Calculating	the	correlation	coefficient

𝒓 = 	
𝒄𝒐𝒗(𝑿, 𝒀)
𝒔𝑿𝒔𝒀

=
∑(𝑿𝒊 − 𝑿3)(𝒀𝒊 − 𝒀3)�
�

∑(𝑿𝒊 − 𝑿3)𝟐�
�
𝒏 − 𝟏 	

� ∑(𝒀𝒊 − 𝒀3)𝟐�
�
𝒏 − 𝟏 	

�

=
𝟏

𝒏 − 𝟏
∑(𝑿𝒊 − 𝑿3)(𝒀𝒊 − 𝒀3)�
�

∑(𝑿𝒊 − 𝑿3)𝟐�
� 	� ∑(𝒀𝒊 − 𝒀3)𝟐�

� 	�



Example:	correlation	between	irises
> setosa <- iris %>% filter(Species == "setosa")
> cor(setosa$Sepal.Length, setosa$Sepal.Width)

[1] 0.7425467

> cor(setosa$Sepal.Width, setosa$Sepal.Length)
[1] 0.7425467
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Example:	correlation	between	irises
> cor(setosa$Petal.Length, setosa$Sepal.Width)

[1] 0.1777
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Hypothesis	testing	with	correlations

> cor.test(setosa$Sepal.Width, setosa$Sepal.Length)
Pearson's product-moment correlation

data: setosa$Sepal.Width and setosa$Sepal.Length
t = 7.6807, df = 48, p-value = 6.71e-10
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5851391 0.8460314
sample estimates:

cor
0.7425467

HO:	Petal	length	and	sepal	width	are	not	correlated	(r=0)
HA:	Petal	length	and	sepal	width	are	correlated	(r!=0)

With	P=6.7e-10,	which	is	much	less	than	0.05,	we	reject	the	null	
hypothesis.	We	find	evidence	that	setosa sepal	widths	and	
sepal	lengths	are	corrected.	The	correlation	coefficient	r=0.74,	
with	a	95%	CI	of	[0.58,	0.85]	This	value	is	above	0,	indicating	a	
positive	relationship,	and	it	is	fairly	large,	indicating	a	strong	
correlation.	



Hypothesis	testing
> cor.test(setosa$Petal.Length, setosa$Sepal.Width)

Pearson's product-moment correlation

data: setosa$Petal.Length and setosa$Sepal.Width
t = 1.2511, df = 48, p-value = 0.217
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1058851 0.4345536
sample estimates:

cor
0.1777

We	fail	to	reject	the	null	hypothesis.	There	is	no	
evidence	that	the	correlation	between	petal	
lengths	and	sepal	width	in	setosa irises	differs	
from	0.



Nonlinear	data
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Nonlinear	data
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> cor.test(x, y)

Pearson's product-moment correlation

data: x and y
t = 13.089, df = 48, p-value < 2.2e-16
alternative hypothesis: true correlation is 

not equal to 0
95 percent confidence interval:
0.8030401 0.9327180
sample estimates:

cor
0.8838302



Spearman	rank	nonparametric	
correlation
Assumes	data	is	monotonic	(ordinal)

> cor.test(x, y, method = "spearman" )

Spearman's rank correlation rho

data: x and y
S = 0, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho

1



Assumptions:	Check	by	plotting
Data	are	linearly	related	without	any	severe	outliers

Both	X	and	Y	are	normally	distributed
◦ Robust	to	large	N

Cloud	of	points	is	not	"funnel-shaped"	(fans	out	at	end(s))

X

Y

X X

Funnel Outlier Non-linear



Exercise	break



Regression
The	simplest	type	of	linear	model
Predicts	the	value	of	one	numeric	variable	from	another	via	
"line	of	best	fit"

𝑌 = 𝑎 + 𝑏𝑋

𝑌 = 𝛽I + 𝛽J𝑋 + 	ℇ

Residuals:	ℇ is	a	random	error	component	
that	measures	how	far	above/below	the	
line	the	actual value	of	Y	for	a	given	X	lies.	
Mean	is	0.



Least	squares	approach
Find	the	line	which	minimizes the	sum	of	squared	residuals
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Least	squares	approach
Find	the	line	which	minimizes the	sum	of	squared	residuals
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Calculating	slope	and	intercept

𝒃 =
𝒄𝒐𝒗(𝑿, 𝒀)

𝒔𝑿𝟐
= 	
∑(𝑿𝒊 − 𝑿3)(𝒀𝒊 − 𝒀3)�
�
𝟏

𝒏 − 𝟏∑(𝑿𝒊 − 𝑿
3)𝟐�

�

𝒀 = 𝒂 + 𝒃𝑿

The	point	(𝑿3,	𝒀3) always	goes	through	the	regression	line
𝒂 = 𝒀3 	− 𝒃𝑿3



Executing	a	linear	model
### lm(Y ~ X, data = <data frame>) ###

> lm(Sepal.Length ~ Sepal.Width, data = setosa)

Call:
lm(formula = Sepal.Length ~ Sepal.Width, data = setosa)

Coefficients:
(Intercept) Petal.Width

2.6390 0.6905
𝒀 = 𝟐. 𝟔𝟒	 + 𝟎. 𝟔𝟗𝑿



Testing	a	linear	model
> summary( lm(Sepal.Length ~ Sepal.Width, data = setosa) )
Call:
lm(formula = Sepal.Length ~ Sepal.Width, data = setosa)

Residuals:
Min 1Q Median 3Q Max

-0.52476 -0.16286 0.02166 0.13833 0.44428

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.6390 0.3100 8.513 3.74e-11 ***
Sepal.Width 0.6905 0.0899 7.681 6.71e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2385 on 48 degrees of freedom
Multiple R-squared: 0.5514, Adjusted R-squared: 0.542
F-statistic: 58.99 on 1 and 48 DF, p-value: 6.71e-10

Five	number	summary	of	the	distribution	of	residuals

SE	of ℇ

Test	for	model	improvement	over	slope=0



Coefficients

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.6390 0.3100 8.513 3.74e-11 ***
Sepal.Width 0.6905 0.0899 7.681 6.71e-10 ***

Test	for	null	hypothesis	
that	coefficient	!=	0

Expected	value	of	Y	when	X=0

Expected	unit	increase	in	Y	for	
every	1	unit	increase	in	X

What	can	we	conclude?
On	average,	setosa Sepal	Length	(Y) increases	by	0.6905	cm	(+/-0.0899	SE)	for	every	
1	cm	of	Sepal	Width	(X).

[If	P	> alpha,	don't	conclude	this..]

lm(Sepal.Length ~ Sepal.Width)
Y X



R2
R2 is	the	percent	of	variation	in	Y	than	can	be	explained	by	X
◦ 0	≤	R2 ≤	1

Multiple R-squared: 0.5514, Adjusted R-squared: 0.542

𝑹𝟐 = 𝒄𝒐𝒗(𝑿,𝒀)
𝒔𝑿𝒔𝒀

𝟐
= 𝟏 − 𝑺𝑺𝒓𝒆𝒔

𝑺𝑺𝒕𝒐𝒕𝒂𝒍
= 	 𝑬𝒙𝒑𝒍𝒂𝒊𝒏𝒆𝒅	𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏

𝑻𝒐𝒕𝒂𝒍	𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏

What	can	we	conclude?
~55%	of	the	variation	in	Setosa sepal	lengths	(Y) can	be	explained	by	Setosa sepals	widths	(X).

[If	P	<	alpha,	don't	conclude	this..]



Broom	to	the	rescue
> summary( lm(Sepal.Length ~ Sepal.Width, data = setosa) )
Call:
lm(formula = Sepal.Length ~ Sepal.Width, data = setosa)

Residuals:
Min 1Q Median 3Q Max

-0.52476 -0.16286 0.02166 0.13833 0.44428

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.6390 0.3100 8.513 3.74e-11 ***
Sepal.Width 0.6905 0.0899 7.681 6.71e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2385 on 48 degrees of freedom
Multiple R-squared: 0.5514, Adjusted R-squared: 0.542
F-statistic: 58.99 on 1 and 48 DF, p-value: 6.71e-10



Broom	to	the	rescue
> library(broom)
> model <- lm(Sepal.Length ~ Sepal.Width, data = setosa)

##### Coefficients and Pvalues #####
> tidy(model)

term estimate std.error statistic p.value
1 (Intercept) 2.6390012 0.31001431 8.512514 3.742438e-11
2 Sepal.Width 0.6904897 0.08989888 7.680738 6.709843e-10

##### Concise *one row* summary #####
> glance(model)

r.squared adj.r.squared sigma statistic p.value df logLik AIC
1 0.5513756 0.5420292 0.2385422 58.99373 6.709843e-10 2 1.734067 2.531865

BIC deviance df.residual
1 8.267934 2.731315 48



Broom	to	the	rescue

##### Add columns from fit to the original data that was modeled #####
> augment(model) 
Sepal.Length Sepal.Width .fitted .se.fit .resid .hat .sigma .cooksd .std.resid

1 5.1 3.5 5.055715 0.03435031 0.04428474 0.02073628 0.2409782 3.726311e-04 0.18760265
2 4.9 3.0 4.710470 0.05117134 0.18952960 0.04601750 0.2393991 1.596010e-02 0.81347001
3 4.7 3.2 4.848568 0.03947370 -0.14856834 0.02738325 0.2400630 5.614273e-03 -0.63152438
4 4.6 3.1 4.779519 0.04480537 -0.17951937 0.03528008 0.2395878 1.073468e-02 -0.76620575
5 5.0 3.6 5.124764 0.03710984 -0.12476423 0.02420180 0.2403616 3.476539e-03 -0.52947419
6 5.4 3.9 5.331911 0.05420835 0.06808885 0.05164186 0.2408507 2.339099e-03 0.29310589



Visualizing	the	regression
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ggplot(setosa, aes(x = Sepal.Width, y = Sepal.Length)) + 
geom_point() + geom_smooth(method = "lm")



Visualizing	the	regression
ggplot(setosa, aes(x = Sepal.Width, y = Sepal.Length)) + 

geom_point() + geom_smooth(method = "lm") +
geom_text(x = 2.75, y = 5.5, label = "y=2.639 + 0.69x", color="red") 

y=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69x
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Visualizing	the	regression
ggplot(setosa, aes(x = Sepal.Width, y = Sepal.Length)) + 

geom_point() + geom_smooth(method = "lm") +
geom_text(x=2.75, y=5.5, label="r^2 == 0.585", parse=TRUE, color="red") 

r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585r2 = 0.585
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Using	the	model:	Predicting	responses
What	is	sepal	length	for	a	sepal	width	of	2.6?	

y=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69xy=2.639 + 0.69x

4.0

4.5

5.0

5.5

2.5 3.0 3.5 4.0 4.5
Sepal.Width

Se
pa

l.L
en

gt
h

> model <- lm(Sepal.Length ~ Sepal.Width, data = setosa)

> new.data <-tibble(Sepal.Width = 2.6) ## Same column name as model's predictor

> predict(model, new.data)
1

4.434275



Predicting	with	intervals
Confidence	interval
◦ Range	that	is	likely	to	contain	the	mean	response

Prediction	interval
◦ Range	that	is	likely	to	contain	the	response	value	of	a	single	new	observation
◦ Wider	than	CI	due	to	added	uncertainty	for	predicting	a	single	point



Predicting	with	intervals
> predict(model, new.data)

1
4.434275

> predict(model, new.data, interval = "confidence")
fit lwr upr

1 4.434275 4.269957 4.598592

> predict(model, new.data, interval = "predict")
fit lwr upr

1 4.434275 3.927287 4.941262

> predict(model, new.data, interval = "confidence", level = 0.9)
fit lwr upr

1 4.434275 4.297205 4.571344



Assumptions	of	linear	models
Residuals	are	normally	distributed
The	variance	is	the	same	for	all	predictors*
Predictors	are	independent	of	each	other*
The	relationship	between	response	and	any	numeric	predictors	
is	linear*



Normality	of	residuals

> augmented <- augment(model)
> qqnorm(augmented$.resid)
> qqline(augmented$.resid)
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How	to	check	regression	assumptions
1. Plot	response	and	predictor	against	each	other	to	ensure	

linearity
◦ Critically	important

2. Plot	the	residuals	to	ensure	normality
◦ Important,	usually	overlooked
◦ Most	times	we	are	robust	to	departures



Exercise	break



Linear	Models
lm(Numeric response ~ <predictors>) 



Linear	Models

Single	numeric	predictor:	Regression
Single	categorical	predictor:	ANOVA
Multiple	numeric	predictors:	multiple	regression
Multiple	categorical	predictors:	n-way	ANOVA
Single	categorical	and	n numeric	predictors:	ANCOVA
Multiple	categorical	and	n numeric	predictors:	linear	model

lm(Numeric response ~ <predictors>) 



ANOVA	meets	linear	modeling
> summary(aov(calcium ~ group, data = tidy.data))

Df Sum Sq Mean Sq F value Pr(>F) 
group 2 944144 472072 14.36 0.000328 ***
Residuals 15 493167 32878

group calcium
1 normal 1200
2 normal 1000
3 normal 980
4 normal 900
5 normal 750
6 normal 800
7 osteopenia 1000
8 osteopenia 1100
9 osteopenia 700

10 osteopenia 800
11 osteopenia 500
12 osteopenia 700
...

> summary(lm(calcium ~ group, data = tidy.data))

Coefficients:
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 938.33 74.02 12.676 2.04e-09 ***
grouposteopenia -138.33 104.69 -1.321 0.206168 
grouposteoporosis -540.00 104.69 -5.158 0.000117 ***

Residual standard error: 181.3 on 15 degrees of freedom
Multiple R-squared: 0.6569, Adjusted R-squared: 0.6111
F-statistic: 14.36 on 2 and 15 DF, p-value: 0.000328 Which	group	you	belong	to	explains	~66%	of	

the	variation	in	calcium	intake

Compared	to	the	normal	group,	the	osteopenia	
group	consumes	on	average	-138.33	less	calcium.

Compared	to	the	normal	group,	the	osteoporosis	
group	consumes	on	average	-540	less	calcium.

944144
944144 + 493167 = 		0.656

On	average,	the	normal	group	consumes	938.33	calcium



Briefly,	bootstrapping	the	regression
> library(slipper)
> setosa %>%

slipper_lm(Sepal.Length ~ Sepal.Width, B=1e3)%>% head()
term value type

1 (Intercept) 2.6390012 observed
2 Sepal.Width 0.6904897 observed
3 (Intercept) 2.0900929 bootstrap
4 Sepal.Width 0.8467474 bootstrap
5 (Intercept) 2.7629316 bootstrap
6 Sepal.Width 0.6527575 bootstrap

setosa %>%
slipper_lm(Sepal.Length ~ Sepal.Width, B=1e3) %>% 
filter(type == "bootstrap", term == "Sepal.Width") %>%
summarize(mean = mean(value),

ci_low = quantile(value,0.025), 
ci_high = quantile(value,0.975))

mean ci_low ci_high
1 0.6945918 0.5302098 0.8961058


