
Resampling	statistics	
and	multiple	testing
STEPHANIE	J. 	SPIELMAN,	PHD

BIO5312,	FALL	2017

While	you	wait,	install	the	following	R	
packages:
1.	devtools

2.	coin

3.	modelr

4.	broom

Computer-intensive	methods
1. Monte	Carlo	simulation	

2. Permutation/randomization	test

3. Bootstrap
1. Here,	for	computing	CI	and	SE

Why	use	simulation
Test	statistics	have	a	true	sampling	distribution	under	specific	
conditions
◦ t-statistics	from	data	have	a	t sampling	distribution	when	data	is	normal	
and/or	N	is	sufficiently	large

◦ 𝝌2 statistics	from	data	have	a	𝝌2 sampling	distribution	when	N	is	sufficiently	
large

We	can	use	simulation	to	approximate an	analytically	
unknown/untractable sampling	distribution	for	given	conditions

Monte	Carlo	simulation
Involves	randomly	sampling	data	from	a	probability	distribution

Random sample of N=15 for N(3.5,4)

> rnorm(15, 3.5, 2)
[1] 5.8166897 3.3402803 2.1469112 3.3038842 5.0005214 2.9234959
[7] 4.6663932 3.1889110 6.2384465 5.8085365 1.7456411 0.3697735
[13] -1.4639567 5.8856386 8.2788721

Using	simulation	for	hypothesis	testing
1. Decide	your	test	statistic

◦ Make	your	own	quantity	or	use	a	"standard"	quantity	(t,	𝝌2,	etc.)

2. Generate	S independent	datasets	under	conditions	of	interest
3. Compute	test	statistic	TS for	each	simulated	dataset

◦ T1,	T2,	T3,	…TS à Sampling	distribution	=	null

4. Compute	P-value	by	finding	your	test	statistic	in	this	TS
distribution

Use	computers	to	imitate	the	process	of	repeated	sampling	from	a	population	to	approximate	the	
null	distribution	of	the	test	statistic.

Example	simulation	study
I	have	a	sample	of	10	ducks:	4	are	blue,	4	are	green,	and	2	are	
purple.	Are	duck	colors	evenly	distributed?

Duck	color # Observed #	expected
blue 4 3.33
green 4 3.33
purple 2 3.34

𝝌2 assumption	violated!

Ho:	Duck	colors	are	evenly	distributed	1:1:1.
Ha:	Duck	colors	are	not	evenly	distributed	1:1:1

Performing	the	simulation	study
1. Choose	my	test	statistic,	here	𝝌2

2. Simulate	a	duck	group	and	compute	the	𝝌2	statistic

3. Repeat	a	lot	of	times	(1e4,	1e5)

Simulating	a	single	group	of	ducks
Simulate a group of ducks
> duck1 <- sample(c("blue", "green", "purple"), 10, replace=T)

compute chi-squared statistic from duck group
> table(duck1)
duck1
blue green purple

4 3 3

> e <- 10/3
> ((4-e)^2)/e + ((3-e)^2)/e + ((3-e)^2)/e
[1] 0.2

Do	this	1e5	times	to	get	1e5𝝌2 test	statistics	

The	full	duck	simulation
all.chisq <- c()
e <- 10/3
for (x in 1:1e5){

duck <- sample(c("blue", "green", "purple"), 10, replace=T)
b <- sum(duck == "blue")
g <- sum(duck == "green")
p <- sum(duck == "purple")
chisqu <- ((b-e)^2)/e + ((g-e)^2)/e + ((p-e)^2)/e
all.chisq <- c(all.chisq, chisqu)

}

length(all.chisq)
[1] 100000

Duck	simulation	testing
Duck	color # Observed #	expected

blue 4 3.33
green 4 3.33
purple 2 3.34

Compute the probability of being as or more extreme as test statistic
> sum(all.chisq >= 0.8)/length(all.chisq)
[1] 0.78705

Chi−squared sampling distribution

Simulated chi−squareds

C
ou

nt

0 5 10 15 20

0
10

00
0

30
00

0

𝝌2 =	0.8

Duck	simulation	results,	conclusions
With	P=0.787,	we	fail	to	reject	the	null	hypothesis.	We	have	no	
evidence	that	duck	color	distributions	differ	from	1:1:1.

Permutation	(randomization)	test
A	computer-intensive	non-parametric	approach	for	comparing	
samples

Approach:
1. Choose	a	statistic	that	measures	the	effect	you	are	looking	for.	
2. Construct	the	sampling	distribution	that	this	statistic	would	have	

if	the	effect	were	not present
3. Locate	the	observed	statistic	(i.e.	from	your	data)	on	this	

distribution.	Area	to	the	tail	=	Pvalue.

Permutation	tests	randomize	observed	
data

Randomly	shuffle	observations	
across	groups

Permutation	when	null	is	trueExample: null is true

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

http://faculty.washington.edu/kenrice/sisg/SISG-08-06.pdf

Example: null is true

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

Example: null is true

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

Permutation	when	null	is	falseExample: null is true

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

http://faculty.washington.edu/kenrice/sisg/SISG-08-06.pdf

Example: null is true

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

Example: null is false

gender outcome

Data

gender outcome

Shuffling outcomes

gender outcome

Shuffling outcomes (ordered)

Example	permutation	test
I	am	measuring	the	length	of	bumblebees	between	two	species	
with	the	following	data	(mm):
◦ Species	A:	4.5,	4.6,	4.1,	5.2
◦ Species	B:	5.1,	4.7,	5.4,	4.8,	4.9

Do	the	bumblebee	species	tend	to	have	the	same	lengths?

Ho:	Bumblebee	species	A	and	B	have	the	same	lengths	on	average
Ha:	Bumblebee	species	A	and	B	have	different	lengths	on	average.

Some	permutations	of	my	data
Species	A:	4.5,	4.6,	4.1,	5.2

Species	B:	5.1,	4.7,	5.4,	4.8,	4.9

Species	A:	4.5,	5.1,	4.1,	5.2
Species	B:	4.6,	4.7,	5.4,	4.8,	4.9

Species	A:	4.6,	4.7,	4.8,	4.9
Species	B:	4.5,	4.1,	5.2,	5.4,	5.1

Testing	the	bee	data
1. Choose	my	test	statistic,	here	t,	and	compute	on	data

2. Create	a	lot of	permuted	datasets
1. Compute	t	for	each	dataset	to	construct	null	sampling	

distribution

3. Compute	P-value	as	probability	of	being	as	or	more	
extreme	than	t calculated	from	data

Performing	step	2
1. Generate	your	permuted	data	with	modelr::permute()

2. Extract	your	permutations	with	purrr:map()

3. See	the	full	permutation	output	with	broom::tidy() or	
broom::glance()

Exciting	detour:	the	broom package
broom tidies*	up	output	from	linear	models	and	hypothesis	tests
◦ Vignette:	https://cran.r-project.org/web/packages/broom/vignettes/broom.html

Functions:
◦ tidy()
◦ glance()
◦ augment()

*groan.

Using	broom in	hypothesis	testing

> versicolor <- iris %>% filter(Species == "versicolor")
> setosa <- iris %>% filter(Species == "setosa")

> my.test <- t.test(versicolor$Sepal.Length, setosa$Sepal.Length)

> tidy(my.test)
estimate estimate1 estimate2 statistic p.value parameter conf.low

1 0.93 5.936 5.006 10.52099 3.746743e-17 86.538 0.7542926
conf.high method alternative

1 1.105707 Welch Two Sample t-test two.sided

Using	broom in	hypothesis	testing	while	
piping

> iris %>%
filter(Species != "virginica") %>%
do(tidy(t.test(Sepal.Length~Species, data=.)))

estimate estimate1 estimate2 statistic p.value parameter conf.low
1 -0.93 5.006 5.936 -10.52099 3.746743e-17 86.538 -1.105707

conf.high method alternative
1 -0.7542926 Welch Two Sample t-test two.sided

Step	One:	compute	t for	my	data
> bees <- tibble(species=c(rep("a", 4), rep("b", 5)),

lengths=c(4.5, 4.6, 4.1, 5.2, 5.1, 4.7, 5.4, 4.8, 4.9))

> t.test(lengths ~species, data=bees)
Welch Two Sample t-test

data: lengths by species
t = -1.4673, df = 4.7391, p-value = 0.2053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.0568836 0.2968836
sample estimates:
mean in group a mean in group b

4.60 4.98

Step	Two:	generate	permutated	data
library(tidyverse)
library(broom)
library(modelr)

Make 10000 permutations with permute(), from modelr
> set.seed(567)
> N <- 1e4
> bee.perms <- permute(bees, N, lengths) ## dataframe number perms, column to permute
> head(bee.perms)
A tibble: 10,000 x 2

perm .id
<list> <chr>

1 <S3: permutation> 00001
2 <S3: permutation> 00002
3 <S3: permutation> 00003
4 <S3: permutation> 00004
5 <S3: permutation> 00005
6 <S3: permutation> 00006

Step	Two:	Compute	t	for	each	
permutated	dataset
> bee.ttests <- map(bee.perms$perm, ~t.test(lengths~species, data=.))
> head(bee.ttests)
[[1]]

Welch Two Sample t-test

data: lengths by species
t = -1.5636, df = 6.6843, p-value = 0.1639
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.9602378 0.2002378
sample estimates:
mean in group a mean in group b

4.60 4.98

[[2]]

Welch Two Sample t-test

data: lengths by species
t = -1.8074, df = 6.3713, p-value = 0.1178
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.9923401 0.1423401
sample estimates:
mean in group a mean in group b

4.575 5.000

Step	Two:	Compute	t	for	each	
permutated	dataset
> bee.ttests <- map(bee.perms$perm, ~t.test(lengths~species, data=.))
> tidied.bees <- map_df(bee.ttests, tidy, .id = "id")
> head(tidied.bees)
id estimate estimate1 estimate2 statistic p.value parameter conf.low

1 1 -0.380 4.600 4.98 -1.5635521 0.1639062 6.684311 -0.9602378
2 2 -0.425 4.575 5.00 -1.8074200 0.1178304 6.371305 -0.9923401
3 3 0.160 4.900 4.74 0.6064784 0.5637055 6.865079 -0.4663247
4 4 -0.065 4.775 4.84 -0.2156013 0.8386887 4.518027 -0.8655244
5 5 -0.245 4.675 4.92 -0.8733769 0.4214981 5.123589 -0.9609000
6 6 -0.335 4.625 4.96 -1.3358210 0.2245809 6.799964 -0.9315602
conf.high method alternative

1 0.2002378 Welch Two Sample t-test two.sided
2 0.1423401 Welch Two Sample t-test two.sided
3 0.7863247 Welch Two Sample t-test two.sided
4 0.7355244 Welch Two Sample t-test two.sided
5 0.4709000 Welch Two Sample t-test two.sided
6 0.2615602 Welch Two Sample t-test two.sided

Visualize	the	null	constructed	with	
permutation

ggplot(tidied.bees,aes(x = statistic)) +
geom_histogram(fill="white", color="deeppink4")

0

500

1000

−4 −2 0 2 4
statistic

co
un
t

Visualize	the	null	constructed	with	
permutation

ggplot(tidied.bees,aes(x = statistic)) +
geom_histogram(fill="white", color="deeppink4") +
geom_vline(xintercept = -1.4673, color="red") +
geom_vline(xintercept = 1.4673, color="red")

0

500

1000

−4 −2 0 2 4
statistic

co
un
t

Step	Three:	calculate	our	Pvalue
> t.from.data <- -1.4673

> sum(tidied.bees$statistic >= abs(t.from.data)) -> upper.tail

> sum(tidied.bees$statistic <= -1*abs(t.from.data)) -> lower.tail

> (upper.tail + lower.tail) / nrow(tidied.bees)
[1] 0.1942

With	P=0.1942,	we	fail	to	reject	the	null	hypothesis.	We	have	no	evidence	that	
bumblebee	species	a	and	b	have	different	lengths.

Pop	Quiz:	P-values	for	a	permutation	test	can	never	be	0.	Why?

Note	on	computations	shown	here

bee.ttests <- map(bee.perms$perm, ~t.test(lengths~species, data=.))

bee.results <- map(bee.perms$perm, ~<only certain functions>)

Note	the	R	package	coin…
Pre-dated	the	tidyverse but	very convenient	for	simple	tests
library(coin)
Permutation test for two arbitrary samples
independence_test(b ~ a, data)

independence_test(lengths ~ species, data = bees)

Asymptotic General Independence Test

data: lengths by species (a, b)
Z = -1.4337, p-value = 0.1517
alternative hypothesis: two.sided

coin	for	contingency	tables
> sparrows %>% group_by(Sex, Survival) %>% tally() -> sex.survival

Sex Survival n
1 Female Alive 21
2 Female Dead 28
3 Male Alive 51
4 Male Dead 36
> xtabs(n ~ Sex + Survival, data = sex.survival) -> sex.survival.table

Survival
Sex Alive Dead

Female 21 28
Male 51 36

>independence_test(sex.survival.table)
Asymptotic General Independence Test

data: Survival by Sex (Female, Male)
Z = -1.7617, p-value = 0.07813
alternative hypothesis: two.sided

Exercise	break

Bootstrapping
Bootstrapping	uses	resampling	from	the	data	with	replacement	
to	approximate	the	sampling	distribution	of	an	estimate

Use	bootstrapping	to	calculate	CI	and	standard	error

What	is	bootstrapping?

As	aside,	this	is	jackknifing

WA	acidic	rain	estimation,	the	"regular	
way"

> rain <- tibble(pH = c(4.73, 5.28, 5.06, 5.16, 5.25, 5.11, 4.79))

> mean(rain$pH)
[1] 5.054286

95% CI as estimate +- t_0.025*SE
> se <- sd(rain$pH)/sqrt(nrow(rain))
> df <- nrow(rain) -1
> qt(0.025,df) * se
[1] -0.1992792

Estimate	for	WA	rain	acidity	is	5.05	+- 0.199

BUT	our	assumptions	for	this	approach	were	not	met,	so	we	should	use	the	bootstrap

Using	the	bootstrap	to	estimate	rain	pH
> set.seed(199)
> devtools::install_github('jtleek/slipper')

> rain.boot <- slipper(rain, mean(pH), B=10000)
> head(rain.boot)

type value
1 observed 5.054286
2 bootstrap 5.090000
3 bootstrap 5.115714
4 bootstrap 4.984286
5 bootstrap 5.015714
6 bootstrap 5.164286

> rain.boot %>% filter(type == "bootstrap") %>% summarize(mean(value))
mean(value)

1 5.054452

https://github.com/jtleek/slipper

Visualizing	the	bootstrap	sampling	
distribution	of	the	mean

> rain.boot %>%
filter(type == "bootstrap") %>%
ggplot(aes(x = value)) + geom_histogram(fill = "white", color ="steelblue")

0

200

400

600

800

4.8 4.9 5.0 5.1 5.2
value

co
un
t

Visualizing	the	bootstrap	sampling	
distribution	of	the	mean

> rain.boot %>%
filter(type == "bootstrap") %>%
ggplot(aes(x = value)) + geom_histogram(fill = "white", color ="steelblue")+
geom_vline(xintercept=5.054286, color="red", size=1.5) +
geom_vline(xintercept=5.054452, color="wheat")

0

200

400

600

800

4.8 4.9 5.0 5.1 5.2
value

co
un
t

All	together,	computing	the	bootstrap	
estimates

rain %>%
slipper(mean(pH),B=10000) %>%
filter(type=="bootstrap") %>%
summarize(mean = mean(value),

ci_low = quantile(value,0.025),
ci_high = quantile(value,0.975))

mean ci_low ci_high
1 5.053425 4.894286 5.192857

Our	bootstrap	estimate:	pH	has	a	mean	of	5.053	with	a	95%	CI	of	[4.89,	5.19]

"Regular"	bootstrap	was	5.05	with	95%	CI	of	[4.85,	5.24]	

What	might	we	want	to	estimate	from	
the	bee	data?
Estimate	for	difference	of	means
Confidence	interval	for	difference	of	means

Generate	bootstraps	when	data	frame	
has	multiple	samples

> bees %>% filter(species == "a") -> bees.a
> bees.a %>%

slipper(mean(lengths), B=1e4) %>%
mutate(species = "a") -> a.boot

type value species
1 observed 4.600 a
2 bootstrap 4.575 a
3 bootstrap 4.200 a
4 bootstrap 4.650 a
...

> bees %>% filter(species == "b") -> bees.b
> bees.b %>%

slipper(mean(lengths), B=1e4) %>%
mutate(species = "b") -> b.boot

type value species
1 observed 4.98 b
2 bootstrap 5.10 b
3 bootstrap 4.84 b
4 bootstrap 4.88 b
...

con't
full.boot <- rbind(a.boot, b.boot)
head(full.boot)

type value species
1 observed 4.600 a
2 bootstrap 4.750 a
3 bootstrap 4.450 a

full.boot %>%
filter(type == "bootstrap") %>%
group_by(species) %>% ### Add unique ID per group line
mutate(n = 1:n()) %>% ### ""
spread(species, value)

type n a b
<fctr> <int> <dbl> <dbl>

1 bootstrap 1 4.750 5.10
2 bootstrap 2 4.450 4.84
3 bootstrap 3 4.500 4.88

con't
full.boot %>%

filter(type == "bootstrap") %>%
group_by(species) %>% ### Add unique ID per group line
mutate(n = 1:n()) %>% ### ""
spread(species, value) %>%
mutate(value = a – b) %>%
summarize(mean = mean(value),

ci_low = quantile(value,0.025),
ci_high = quantile(value,0.975))

A tibble: 1 x 3
mean ci_low ci_high

<dbl> <dbl> <dbl>
1 -0.3816805 -0.815 0.07

The	bootstrap	difference	in	mean	bee	lengths	is	-0.382	with	a	95%	bootstrap	CI	of	[-0.815,	0.07]
Pop	quiz!	Recall	our	permutation	test	gave	P=0.19.	Is	the	bootstrap	consistent?

Exercise	break

Multiple	testing
https://xkcd.com/882/

Run	tests	until	you	get	a	significant	result	=	no.
◦ Data	dredging
◦ P-hacking
◦ Data	fishing
◦ Data	snooping

False	positive	rate	increases	with	more	
tests
Single	test
P(false	positive)	=	α
P(not	false	positive)	=	1- α

N	tests
P(no	false	positives)	=	(1	- α)N

P(at	least	1	false	positive)	=	1	- (1	- α)N

For	N=20	and	α=0.05,	P(at	least	1	false	positive)	=	65%
For	N=100	and	α=0.05,	P(at	least	1	false	positive)	=	99%

Example:	Many	tests	on	iris
versicolor <- iris %>% filter(Species == "versicolor")
virginica<- iris %>% filter(Species == "virginica")
setosa <- iris %>% filter(Species == "setosa")

> t.test(versicolor$Sepal.Length, virginica$Sepal.Length)$p.value
[1] 1.866144e-07
> t.test(versicolor$Sepal.Length, setosa$Sepal.Length)$p.value
[1] 3.746743e-17
> t.test(virginica$Sepal.Length, setosa$Sepal.Length)$p.value
[1] 3.966867e-25

> t.test(versicolor$Sepal.Width, virginica$Sepal.Width)$p.value
[1] 0.001819483
> t.test(versicolor$Sepal.Width, setosa$Sepal.Width)$p.value
[1] 2.484228e-15
> t.test(virginica$Sepal.Width, setosa$Sepal.Width)$p.value
[1] 4.570771e-09

> t.test(versicolor$Petal.Length, virginica$Petal.Length)$p.value
[1] 4.900288e-22
> t.test(versicolor$Petal.Length, setosa$Petal.Length)$p.value
[1] 9.934433e-46
> t.test(virginica$Petal.Length, setosa$Petal.Length)$p.value
[1] 9.269628e-50

> t.test(versicolor$Petal.Width, virginica$Petal.Width)$p.value
[1] 2.111534e-25
> t.test(versicolor$Petal.Width, setosa$Petal.Width)$p.value
[1] 2.717008e-47
> t.test(virginica$Petal.Width, setosa$Petal.Width)$p.value
[1] 2.437136e-48

Two	broad	types	of	error	rates
Family-wise	error	rate	(FWER)
◦ Probability	of	having	at	least	one	false	positive	among	all	tests
◦ Probability	of	rejecting	at	least	one	true	null
◦ Corrections	control	FWER	<=	α

False	discovery	rate	(FDR)
◦ Expected	proportion	of	false	positives	among	rejected	hypotheses
◦ Rate	that	false	discoveries	occur
◦ FP	/	(FP	+	TP)
◦ Corrections	control	FDR	<=	α

Controlling	the	FWER
Bonferroni correction	is	the	most	common
◦ For	m tests,	change	α	à α/m	and	assess	significance

My	6	tests	gave	P	=	{0.01,	0.03,	0.004,	0.027,	0.0006,	0.048}
◦ 0.05	à 0.05/6	àMy	new	α	is	0.0083
◦ P	=	{0.01,	0.03,	0.004,	0.027, 0.0006,	0.048}

Can	alternatively	multiply	P-values	by	m	and	use	original	α	(0.05)
◦ raw	P	=	{0.01,	0.03,	0.004,	0.027,	0.0006,	0.048}
◦ corrected	P =	{0.06,	0.18,	0.024, 0.162 0.0036,	2.88 1.0}

The	Holm	(BH)	method	uses	a	stepwise	
procedure	to	control	FWER
Uses	a	stepwise	 (step-down)	procedure	to	control	FWER

1. Order	P-values	from	m tests	from	smallest	to	largest	and	rank	k
2. For	a	given	α,	find	the	smallest	k where	Pk >	α/(m+1-k)
3. Reject	Ho	for	all	P1…Pk-1
1. Fail	to	reject	Ho	for	all	Pk…Pm

Holm	(Bonferroni-Holm)	FWER	
correction

P	=	{0.01,	0.03,	0.004,	0.027,	0.0006,	0.048}
Raw	P

0.0006

0.004

0.01

0.027

0.03

0.048

α/(m-k+1)

0.05/(6-1+1)	=	0.0083

0.05/(6-2+1)	=	0.01

0.05/(6-3+1)	=	0.0125

0.05/(6-4+1)	=	0.0125

P	is	smaller,	continue

P	is	smaller,	continue

P	=	{0.01,	0.03,	0.004,	0.027,	0.0006,	0.048}

P	is	smaller,	continue

P	is	greater,	STOP

Holm	FWER	correction	with	corrected	P
Pcorrected =	m*pk, k=1

=	max[p(k-1),	pk*(m-k+1)],				k>1
Raw	P

0.0006

0.004

0.01

0.027

0.03

0.048

Holm-corrected	P

0.0006	*	6	=	0.0036

0.004	*	(6-2+1)	=	0.02
max(0.0036,	0.02)	= 0.02
0.01	*	(6-3+1)	=	0.04
max(0.02,	0.04)	= 0.04
0.027	*	(6-4+1)	=	0.081
max(0.04,	0.081)	= 0.081
0.03	*	(6-5+1)	=	0.06
max(0.081,	0.06)	= 0.081
0.048	*	(6-6+1)	=	0.048
max(0.081,	0.048)	= 0.081

Controlling	error	with	FDR
FWER	control	procedures	are	highly	conservative
◦ Bonferroni	is	the	most	severe
◦ Guarantees	low	false	positive	rate	at	the	cost	of	a	high	false	negative	rate

FDR	control	procedures	are	much	more	powerful
◦ You	end	up	with	more	significant	results,	at	the	cost	of	a	higher	false	positive	
rate

◦ Invented	as	a	response	to	the	severe	conservatism	of	Bonferroni,	etc.

Controlling	FDR	with	Benjamini-
Hotchberg ("BH")
This	is	also	a	stepwise	("step-up")	procedure

1. Determine	the	FDR	you	are	willing	to	live	with	with,	Q	
2. Order	P-values	from	m tests	from	smallest	to	largest	and	rank	
3. For	a	given	Q,	find	the	largest	k where	Pk ≤	Q	*	k/m
4. Reject	all	Ho	for	P1…Pk
1. Fail	to	reject	Ho	for	Pk+1…Pm

BH	FDR	procedure
P	=	{0.01,	0.03,	0.004,	0.027,	0.0006,	0.048}

Raw	P

0.0006

0.004

0.027

0.03

0.01

0.048 P	is	smaller,	STOP

α	*	k/m

0.05	*	6/6 =	0.05

P	=	{0.01,	0.03,	0.004,	0.027,	0.0006,	0.048}

FDR	correction	with	corrected	P
Pcorrected =	pk, k=m

=	min[p(k+1),	pk*(m/k)],				k<m
Raw	P

0.0006

0.004

0.01

0.027

0.03

0.048

FDR-corrected	P

0.0006	*	6/1 =		0.0036
min(0.012,	0.0036)	=	0.0036
0.004	*	6/2 =		0.012
min(0.02,	0.012)	=	0.012
0.01	*	6/3 =		0.02
min(0.036,	0.02)	=	0.02
0.027	*	6/4 =		0.0405
min(0.036,	0.0405)	=	0.036
0.03	*	6/5 =		0.036
min(0.048,	0.036)	=	0.036
0.048

R	makes	it	super	easy
p.values <- c(0.0006, 0.004, 0.01, 0.027, 0.03, 0.048)

Holm is default
p.adjust(p.values)
[1] 0.0036 0.0200 0.0400 0.0810 0.0810 0.0810

Specify Bonferroni
p.adjust(p.values, method = "bonferroni")
[1] 0.0036 0.0240 0.0600 0.1620 0.1800 0.2880

Specify as bonf for when you can't remember if 2 r's or 2 n's
p.adjust(p.values, method = "bonf")
[1] 0.0036 0.0240 0.0600 0.1620 0.1800 0.2880

Specify FDR
p.adjust(p.values, method = "fdr")
[1] 0.0036 0.0120 0.0200 0.0360 0.0360 0.0480

Use	sum()	to	determine	number	of	
significant	results

p.values <- c(0.0006, 0.004, 0.01, 0.027, 0.03, 0.048)
alpha <- 0.05

Holm
sum(p.adjust(p.values) <= alpha)
[1] 3

Bonferroni
sum(p.adjust(p.values, method = "bonf") <= alpha)
[1] 2

FDR
sum(p.adjust(p.values, method = "fdr") <= alpha)
[1] 6

Running	multiple	tests	in	R
pairwise.t.test(response, grouping)
pairwise.wilcox.test(response, grouping)

> pairwise.t.test(iris$Sepal.Width, iris$Species)

Pairwise comparisons using t tests with pooled SD

data: iris$Sepal.Width and iris$Species

setosa versicolor
versicolor < 2e-16 -
virginica 9.1e-10 0.0031

P value adjustment method: holm

Specify	correction	with	"p.adj"
> pairwise.t.test(iris$Sepal.Width, iris$Species, p.adj = "fdr")

Pairwise comparisons using t tests with pooled SD

data: iris$Sepal.Width and iris$Species

setosa versicolor
versicolor < 2e-16 -
virginica 6.8e-10 0.0031

P value adjustment method: fdr

The	triumphant	return	of	broom!
> pairwise.t.test(iris$Sepal.Width, iris$Species, p.adj = "fdr") %>% tidy()

group1 group2 p.value
1 versicolor setosa 5.497468e-17
2 virginica setosa 6.808435e-10
4 virginica versicolor 3.145180e-03

How many are significant at 0.05?
pairwise.t.test(iris$Sepal.Width, iris$Species, p.adj = "fdr") %>%

tidy() %>%
mutate(sig = p.value <= 0.05) %>%
group_by(sig) %>% tally()
sig n

<lgl> <int>
1 TRUE 3

The	thrilling	age	of	GWASwww.nature.com/scientificreports/

2Scientific RepoRts | 6:30981 | DOI: 10.1038/srep30981

mechanisms that associated with aggressive behaviour in chickens and we hope that our study can provides a new
insight into understanding aggression in chickens.

In the present study, with the use of a 600 K Affymetrix® Axiom® High density (HD) chicken genotyping
array, we performed GWAS to identify candidate genes or genomic regions that associated with chicken aggres-
sive behaviour. One SNP rs312463697 was found to be reached 5% Bonferroni genome-wide significantly asso-
ciated (P = 2.10905E-07) with male aggression and it is located in the intron region of the SORCS2 gene on
chromosome 4. In response to knockdown of SORCS2 by siRNA, the mRNA levels of NGF, L-dopa and dopamine
receptor genes (DRD1, DRD2, DRD3 and DRD4) were significantly decreased (P < 0.05). In summary, our data
indicated that variations of SORCS2 gene might contribute to the susceptibility of chicken aggressive behaviour
and these can provide a new insight into genetics of aggressive behaviour in chickens.

Results
To explore the genetic regulatory mechanism associated with aggressive behaviour, a total of 265 male chickens
were genotyped with a 600 K Affymetrix® Axiom® HD chicken genotyping array consisting of 559,898 loci. After
filtering, 468,020 SNPs were used for further analysis. Behavioural observations and growth traits of male chick-
ens were recorded daily from the adult males for 16 days. The parameters of male aggressive behaviour measured
traits were used for GWAS-association study (Table 1). SORCS2 knockdown was tested in this study. The gene
networks and gene expression of some of the top candidates related to aggressive behaviour have also been inves-
tigated. Here, 33 SNPs were significantly associated with male’s aggressive behaviour. Biological function analysis
of the nearest (26 genes) genes of significant SNPs was performed with IPA. An interaction network contained
17 genes was obtained and SORCS2 was involved in this network, and interacted with NGF, NGFR, L-dopa and
dopamine. Further, we also measured SORCS2 mRNA levels using RT-qPCR method, results showed that the
highest aggressive chickens have significantly higher expression level of SORCS2 in the pituitary tissue than the
lowest aggressive chickens (P = 0.029). Moreover, after knockdown of SORCS2, the mRNA levels of NGF, L-dopa
and dopamine receptor genes (DRD1, DRD2, DRD3 and DRD4) were significantly decreased (P = 0.003, 0.023
and 0.012, 1.64981E-05, 0.045, and 6.67515E-05), respectively.

Correlation analysis. In order to illuminate the correlation between chicken aggressive behaviour and
growth traits, chicken daily aggressive frequency (DAF), daily feed intake (DFI), daily body weight (DBW) and
daily body weight gain (DBWG) were measured and analyzed by Pearson correlation test. Analysis of Pearson’s
correlation coefficient showed that there was significant positive correlation (P = 0.0105) between DAF and
DFI. Interestingly, there is no significant correlation between DAF and DBW (P = 0.9785), or between DAF and
DBWG (P = 0.6111) (Table 2). These data indicated that aggressive chicken consumed more feeds, but did not
converted into muscle tissue or body weight gain.

Genome-wide association analysis (GWAS). The 265 male Chinese native dwarf yellow chickens
were genotyped using a 600 K Affymetrix® Axiom® HD chicken genotyping array. Genotyping revealed a set
of 559,898 scorable SNPs. After quality control filtering, 468,020 SNPs were finally used for GWAS to study
aggressive behaviour trait. All birds were healthy, with no suffer from illness. Chromosomal position for each
SNP marker was obtained from the chicken reference genome (ftp://ftp.ensembl.org/pub/release-73/fasta/gal-
lus_gallus/dna/). 552,395 SNP markers were mapped to known chromosomal positions, while remaining 7,503
SNPs were mapped to unknown (UN) chromosomal positions. The average physical distance between adja-
cent SNPs was 2.21 Kb. The number of SNP markers per chromosome with known positions ranged from 14
on chromosome W to 98,565 on chromosome 1, and the average spacing for each SNP marker was 2.23 Kb
(Supplementary Table S1). There was no dramatic deviation between observed and expected (− log10 P-value) in
the quantile-quantile plot and the estimate of λ of each trait is 1.00000 (Fig. S1), suggesting that there was little
or no evidence of residual population structure effects in test statistic inflation16. The global view of P-values for
all SNP markers of four aggressive-behaviour phenotypes measured traits were visualized by a Manhattan plot
(Fig. 1) using the “qqman” package in R Language17, and the results showed that the chicken (Gallus Gallus)
chromosome 4 (GG4) region was the most frequent associated with aggressive behaviour, followed by chromo-
some 2 (GGA2) and chromosome 12 (GGA12) (Table 3). A total of 40 SNP effects, involving 33 SNPs and 26
genes were detected for the four aggressive-behaviour phenotypes measured traits with genome-wide significance

Abbreviation Phenotype Description Classification Mean ± SD

T1
Number of fighting times
during the whole recording
period (16 days)

Fighting times

14.69 ± 11.24

T2
Number of fighting times in
days with frequencies not
less than 4 times per day

4.64 ± 8.63

T3 Number of days for chicken
showed fighting

Fighting days

7.28 ± 3.53

T4
Number of days for chicken
showed fighting with
frequencies not less than 4
times per day

0.89 ± 3.53

Table 1. Four aggressive-behaviour phenotypes measured traits in male chickens.

1Scientific RepoRts | 6:30981 | DOI: 10.1038/srep30981

���.����re.���/s��e������rep�r�s

Genome-wide association study of
aggressive behaviour in chicken
Zhenhui Li1,2, Ming Zheng1,2, Bahareldin Ali Abdalla1,2, Zhe Zhang1,2, Zhenqiang Xu1,2,3,
Qiao Ye1,2, Haiping Xu1,2, Wei Luo1,2, Qinghua Nie1,2 & Xiquan Zhang1,2

In the poultry industry, aggressive behaviour is a large animal welfare issue all over the world. To
date, little is known about the underlying genetics of the aggressive behaviour. Here, we performed a
genome-wide association study (GWAS) to explore the genetic mechanism associated with aggressive
behaviour in chickens. The GWAS results showed that a total of 33 SNPs were associated with
aggressive behaviour traits (P < 4.6E-6). rs312463697 on chromosome 4 was significantly associated
with aggression (P = 2.10905E-07), and it was in the intron region of the sortilin-related VPS10 domain
containing receptor 2 (SORCS2) gene. In addition, biological function analysis of the nearest 26 genes
around the significant SNPs was performed with Ingenuity Pathway Analysis. An interaction network
contained 17 genes was obtained and SORCS2 was involved in this network, interacted with nerve
growth factor (NGF), nerve growth factor receptor (NGFR), dopa decarboxylase (L-dopa) and dopamine.
After knockdown of SORCS2, the mRNA levels of NGF, L-dopa and dopamine receptor genes DRD1,
DRD2, DRD3 and DRD4 were significantly decreased (P < 0.05). In summary, our data indicated that
SORCS2 might play an important role in chicken aggressive behaviour through the regulation of
dopaminergic pathways and NGF.

Aggressive behaviour is a large animal welfare issue affecting the poultry breeding population all over the world.
Broiler breeder males under commercial conditions are reported to behave high levels of aggression, often injur-
ing and sometimes killing females and also reduced fertility in a flock1,2.

Aggression is an evolutionarily conserved behaviour and it has been previously studied in many non-human
species such as rodents, songbirds, zebrafish, and drosophila3. Chicken aggressive behaviour is defined as fight
for living space, direct social dominance, food, strangeness, copulations, presence of male and other factors for
individual survival condition1,4. It is an important component of chicken social behaviour through fighting with
their companions to establish their position in the hierarchy and setting up social rank5. However, it could cause
increased social stress, body damage, mortality as well as appearance defects, resulting in serious economic losses.
Therefore, genetic mechanism regulating aggression can not only develop a better understanding of chicken
aggression, but also can improves the economic efficiency and animal welfare for poultry industry.

It’s believed that, the problems associated with aggressiveness in broiler breeder males are genetic factors that
produce differences in both general aggressiveness and sexual aggressiveness6. However, both genetic and envi-
ronmental factors, including diet7, lighting conditions8, feeding methods, group size9, sex-mixed in a large flock
of laying hens10, gender, and age, could modulate chicken aggressive behaviour. In chicken, an aggression-related
heritability estimate value of 0.57 has been reported earlier by Siegel; in which selection trial of two-way was
used to produce the next generation, and the selection is made with respect to only one parent for the selected
trait from twice the ratio of change per generation to the average differential of selection11. Previous studies
demonstrated that fear-related aggressive behaviour and early life stress-induced aggression were regulated by
hypothalamic-pituitary-adrenal (HPA) axis12,13. Canonical neurotransmitters, such as dopamine, serotonin
(5-HT) and gamma-aminobutyric acid (GABA), could modulate animal aggressive behaviour14. GWAS that
screening majority of the genome using dense genomic markers have been developed and utilized widely in the
analyses of complex traits in both animals and humans15. GWAS take vantage of a large numbers of SNP markers
in population-wide linkage disequilibrium with extremely narrow regions potentially harboring candidate loci
for the complex traits. To our knowledge, this is the first GWAS conducted to explore genetics and molecular

1Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural
����ers���ǡ
�������� ͻ106ͺǡ
��������ǡ �����. Guangdong Provincial Key Lab of Agro-Animal Genomics
and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture,

�������� ͻ106ͺǡ
��������ǡ �����. 3�e�s ���	��� �����r� �ree���� ��.ǡ ���.ǡ ���	� ͻͽͺ00ǡ
��������ǡ
�����. ��rresp���e��e ��� re��es�s ��r ���er���s s����� �e ���resse� �� �.�. ȋe����: ��������̻s���.e��.��Ȍ

Re�e��e�: ��r�� 016

A��ep�e�: 1 ��� 016

P����s�e�: 03 ����s� 016

OPEN

The	age	of	GWAS

www.nature.com/scientificreports/

3Scientific RepoRts | 6:30981 | DOI: 10.1038/srep30981

(P < 4.6E-6) (Table 3). Among the 33 suggestive significant associated SNPs, 65%, 32.5%, and 2.5% were transi-
tion, transversion and insertion, respectively (Table 3). Two SNP effects involving one SNP located in the SORCS2
reached genome-wide significance for T1 and T2 of aggressive-behaviour phenotypes measured traits. The top
five significant SNPs were found in the regions of known genes; SNP1 found in the intron region of the carboxy-
peptidase Z gene (CPZ) (P = 5.15392E-08), SNP2 found at 17,602 bp upstream of G protein-coupled receptor 78
(GPR78) (P = 5.15392E-08). SNP3 is a synonymous SNP of huntingtin (HTT) (P = 1.12185E-07), SNP4 is a syn-
onymous SNP of signal peptidase complex subunit 1 (SPCS1) (P = 1.55329E-07) and SNP5 at the intron region of
SORCS2 (P = 2.10905E-07).

The distribution of genome-wide significant SNPs spread across 10 chromosomes, including chromosome
1, 2, 4, 12, 13, 19, 21–23 and 26. The GWAS results revealed that the largest cluster of significant SNP effects for
chicken aggression traits involved 10 SNPs in the region of 3,773,061–81,759,949 bp on GGA4, including 9 genes
(Table 3).

Ingenuity Pathway Analysis (IPA). The genome-wide association mapping revealed that 40 SNP effects,
involving 33 SNPs and 26 genes, were significantly associated with chicken aggressive behaviours measured traits.
To identify the function of the nearest genes to the 33 associated loci and their potential connections, we used
IPA to analyze the 26 genes within the significance associated loci. In this study, there was a gene-gene interac-
tion network with score of 28 generated by IPA (Fig. 2a). The gene-gene interaction network contained 9 of the
nearest genes including SORCS2, HTT, tet methylcytosine dioxygenase 3 (TET3), carbohydrate (chondroitin 4)
sulfotransferase 11 (CHST11), catenin, beta interacting protein 1 (CTNNBIP1), glypican 3 (GPC3), glypican 4
(GPC4), cryptochrome circadian clock1 (CRY1) and Rho GTPase activating protein 26 (ARHGAP26) (Fig. 2a)
(Table 4). In the network, SORCS2 interacted with NGF, NGFR, L-dopa and dopamine (Fig. 2a). A total of

Trait
FTD

r p t df 95 percent confidence interval
DFI 0.03930552 0.01048* 2.5608 4238 0.009214962 0.069324968
DBW − 0.000413292 0.9785 − 0.026905 4238 − 0.03051438 0.02968854
DBWG − 0.007812161 0.6111 − 0.50859 4238 − 0.03790471 0.02229455

Table 2. Pearson’s product-moment correlation between aggressive behaviour and growth traits, including
daily feed intake (DFI), daily body weight (DBW) and daily body weight gain (DBWG). “r” stands for
the estimated measure of association; “t” stands for the value of the test statistic; “df ” stands for the degrees
of freedom of the test statistic in the case that it follows a t distribution; “p” stands for the p-value of the test;
alternative hypothesis: true correlation is not equal to 0.

Figure 1. Manhattan plots of genome-wide association study on chicken aggressive-behaviour measured
traits from T1 to T4 for all the SNPs. The associated values (in terms of − log10P) are shown by chromosomes.
The blue highlighted line indicates genome-wide association (P = 4.6E-6), and the red highlighted line indicates
significance with a P-value threshold of the 5% Bonferroni genome-wide significance (P = 2.3E-7).

Figure	1.	Manhattan	plots	of	genome-wide	association	study	on	chicken	aggressive-behaviour measured	traits	from	T1	to	T4	for	all	the	SNPs.	
The	associated	values	(in	terms	of	−log10P)	are	shown	by	chromosomes.	
The	blue	highlighted	line	indicates	genome-wide	association	(P	=	4.6E-6),	
and	the	red	highlighted	line	indicates	significance	 with	a	P-value	threshold	of	the	5%	Bonferroni	genome-wide	significance	(P	=	2.3E-7).	

Exercise	break

