# Resampling statistics and multiple testing

STEPHANIE J. SPIELMAN, PHD

BIO5312, FALL 2017

# While you wait, install the following R packages:

1. devtools

2. coin

3. modelr

4. broom

### Computer-intensive methods

1. Monte Carlo simulation

2. Permutation/randomization test

3. Bootstrap

1. Here, for computing CI and SE

### Why use simulation

Test statistics have a true sampling distribution under specific conditions

- *t*-statistics from data have a *t* sampling distribution when data is normal and/or N is sufficiently large
- $\chi^2$  statistics from data have a  $\chi^2$  sampling distribution when N is sufficiently large

We can use **simulation** to **approximate** an analytically unknown/untractable sampling distribution for given conditions

### Monte Carlo simulation

Involves randomly sampling data from a probability distribution

### Random sample of N=15 for *N*(3.5,4)

```
> rnorm(15, 3.5, 2)
[1] 5.8166897 3.3402803 2.1469112 3.3038842 5.0005214 2.9234959
[7] 4.6663932 3.1889110 6.2384465 5.8085365 1.7456411 0.3697735
[13] -1.4639567 5.8856386 8.2788721
```

### Using simulation for hypothesis testing

- 1. Decide your test statistic
  - Make your own quantity or use a "standard" quantity ( $t, \chi^2$ , etc.)
- 2. Generate *S* independent datasets under conditions of interest
- 3. Compute test statistic  $T_s$  for each simulated dataset
  - $T_{1\nu}$   $T_{2\nu}$   $T_{3\nu}$  ...  $T_{s} \rightarrow$  Sampling distribution = null
- 4. Compute P-value by finding your test statistic in this  $T_s$  distribution

Use computers to imitate the process of repeated sampling from a population to approximate the null distribution of the test statistic.

### Example simulation study

I have a sample of 10 ducks: 4 are blue, 4 are green, and 2 are purple. Are duck colors evenly distributed?

Ho: Duck colors are evenly distributed 1:1:1.Ha: Duck colors are not evenly distributed 1:1:1

| Duck color | # Observed | # expected                    |
|------------|------------|-------------------------------|
| blue       | 4          | 3.33                          |
| green      | 4          | 3.33                          |
| purple     | 2          | 3.34                          |
|            |            | $\chi^2$ assumption violated! |

### Performing the simulation study

- 1. Choose my test statistic, here  $\chi^2$
- 2. Simulate a duck group and compute the  $\chi^2$  statistic

3. Repeat a lot of times (1e4, 1e5)

### Simulating a single group of ducks

```
### Simulate a group of ducks
> duck1 <- sample(c("blue", "green", "purple"), 10, replace=T)</pre>
```

#### Do this 1e5 times to get $1e5\chi^2$ test statistics

### The full duck simulation

```
all.chisq <- c()
e <- 10/3
for (x in 1:1e5){
    duck <- sample(c("blue", "green", "purple"), 10, replace=T)
    b <- sum(duck == "blue")
    g <- sum(duck == "green")
    p <- sum(duck == "purple")
    chisqu <- ((b-e)^2)/e + ((g-e)^2)/e + ((p-e)^2)/e
    all.chisq <- c(all.chisq, chisqu)
}</pre>
```

length(all.chisq)
[1] 100000

|                         | Duck color | # Observed | # expected |                |
|-------------------------|------------|------------|------------|----------------|
|                         | blue       | 4          | 3.33       | $\chi^2 = 0.8$ |
| nuck simulation testing | green      | 4          | 3.33       |                |
| uck siniulation testing | purple     | 2          | 3.34       | -              |



Simulated chi-squareds

## Compute the probability of being as or more extreme as test statistic
> sum(all.chisq >= 0.8)/length(all.chisq)
[1] 0.78705

### Duck simulation results, conclusions

With P=0.787, we fail to reject the null hypothesis. We have no evidence that duck color distributions differ from 1:1:1.

### Permutation (randomization) test

A computer-intensive non-parametric approach for comparing samples

Approach:

- 1. Choose a statistic that measures the effect you are looking for.
- 2. Construct the sampling distribution that this statistic would have <u>if the effect were *not* present</u>
- 3. Locate the observed statistic (i.e. from your data) on this distribution. Area to the tail = Pvalue.

## Permutation tests randomize observed data

Randomly shuffle observations across groups

### Permutation when null is true



### Permutation when null is false



http://faculty.washington.edu/kenrice/sisg/SISG-08-06.pdf

### Example permutation test

I am measuring the length of bumblebees between two species with the following data (mm):

- ° Species A: 4.5, 4.6, 4.1, 5.2
- Species B: 5.1, 4.7, 5.4, 4.8, 4.9

#### Do the bumblebee species tend to have the same lengths?

Ho: Bumblebee species A and B have the same lengths on average Ha: Bumblebee species A and B have different lengths on average.

### Some permutations of my data

Species A: 4.5, 4.6, 4.1, 5.2 Species B: 5.1, 4.7, 5.4, 4.8, 4.9

Species A: 4.5, 5.1, 4.1, 5.2 Species B: 4.6, 4.7, 5.4, 4.8, 4.9

Species A: 4.6, 4.7, 4.8, 4.9 Species B: 4.5, 4.1, 5.2, 5.4, 5.1

### Testing the bee data

1. Choose my test statistic, here t, and compute on data

#### 2. Create **a lot** of permuted datasets

1. Compute *t* for each dataset to construct null sampling distribution

3. Compute P-value as probability of being as or more extreme than *t* calculated from data

### Performing step 2

1. Generate your permuted data with modelr::permute()

- 2. Extract your permutations with purrr:map()
- 3. See the full permutation output with broom::tidy() or broom::glance()

### Exciting detour: the broom package

broom tidies\* up output from linear models and hypothesis tests
 Vignette: <u>https://cran.r-project.org/web/packages/broom/vignettes/broom.html</u>

\*groan.

#### Functions:

- o tidy()
- glance()
- o augment()

### Using broom in hypothesis testing

- > versicolor <- iris %>% filter(Species == "versicolor")
- > setosa <- iris %>% filter(Species == "setosa")

> my.test <- t.test(versicolor\$Sepal.Length, setosa\$Sepal.Length)</pre>

#### > tidy(my.test)

estimate estimate1 estimate2 statistic p.value parameter conf.low 1 0.93 5.936 5.006 10.52099 3.746743e-17 86.538 0.7542926 conf.high method alternative 1 1 105707 Wolch Two Sample + test two sided

1 1.105707 Welch Two Sample t-test two.sided

# Using broom in hypothesis testing while piping

> iris %>%

filter(Species != "virginica") %>%
do(tidy(t.test( Sepal.Length~Species, data=. )))

estimate estimate1 estimate2 statistic p.value parameter conf.low 1 -0.93 5.006 5.936 -10.52099 3.746743e-17 86.538 -1.105707 conf.high method alternative 1 -0.7542926 Welch Two Sample t-test two.sided

### Step One: compute t for my data

```
> t.test(lengths ~species, data=bees)
Welch Two Sample t-test
```

```
data: lengths by species
t = -1.4673, df = 4.7391, p-value = 0.2053
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.0568836 0.2968836
sample estimates:
mean in group a mean in group b
4.60 4.98
```

### Step Two: generate permutated data

library(tidyverse)
library(broom)
library(modelr)

### Make 10000 permutations with permute(), from modelr > set.seed(567) > N <- 1e4 > bee.perms <- permute(bees, N, lengths) ## dataframe number perms, column to permute > head(bee.perms) # A tibble: 10,000 x 2 perm .id <list> <chr> 1 <S3: permutation> 00001 2 <S3: permutation> 00002 3 <S3: permutation> 00003 4 <S3: permutation> 00004 5 <S3: permutation> 00005 6 <S3: permutation> 00006

# Step Two: Compute *t* for each permutated dataset

> bee.ttests <- map(bee.perms\$perm, ~t.test(lengths~species, data=.))
> head(bee.ttests)
[[1]]

Welch Two Sample t-test

[[2]]

Welch Two Sample t-test

# Step Two: Compute *t* for each permutated dataset

- > bee.ttests <- map(bee.perms\$perm, ~t.test(lengths~species, data=.))</pre>
- > tidied.bees <- map\_df(bee.ttests, tidy, .id = "id")</pre>

> head(tidied.bees)

| • | id es | stimate | e esti | mate | 1 estim | ate2  | sta   | tistic  |     | p.value  | parameter | СС  | onf.low |
|---|-------|---------|--------|------|---------|-------|-------|---------|-----|----------|-----------|-----|---------|
| 1 | 1     | -0.38   | 0      | 4.60 | 00      | 4.98  | -1.5  | 5635521 | 0.  | 1639062  | 6.684311  | -0. | 9602378 |
| 2 | 2     | -0.42   | 5      | 4.57 | '5      | 5.00  | -1.8  | 8074200 | 0.  | .1178304 | 6.371305  | -0. | 9923401 |
| 3 | 3     | 0.16    | 0      | 4.90 | 00      | 4.74  | 0.0   | 5064784 | 0.  | 5637055  | 6.865079  | -0. | 4663247 |
| 4 | 4     | -0.06   | 5      | 4.77 | '5      | 4.84  | -0.2  | 2156013 | 0.  | .8386887 | 4.518027  | -0. | 8655244 |
| 5 | 5     | -0.24   | 5      | 4.67 | '5      | 4.92  | -0.8  | 8733769 | 0.  | .4214981 | 5.123589  | -0. | 9609000 |
| 6 | 6     | -0.33   | 5      | 4.62 | 25      | 4.96  | 1 · · | 0058210 | 0.  | .2245809 | 6.799964  | -0. | 9315602 |
|   | conf  | .high   |        |      |         | metho | od a  | lternat | ive | 9        |           |     |         |
| 1 | 0.20  | 02378   | Welch  | Two  | Sample  | t-tes | st    | two.si  | dec | t        |           |     |         |
| 2 | 0.14  | 23401   | Welch  | Two  | Sample  | t-tes | st    | two.si  | dec | t        |           |     |         |
| 3 | 0.78  | 63247   | Welch  | Two  | Sample  | t-tes | st    | two.si  | dec | t        |           |     |         |
| 4 | 0.73  | 55244   | Welch  | Two  | Sample  | t-tes | st    | two.si  | dec | t        |           |     |         |
| 5 | 0.47  | 09000   | Welch  | Two  | Sample  | t-tes | st    | two.si  | dec | t        |           |     |         |
| 6 | 0.26  | 15602   | Welch  | Two  | Sample  | t-tes | st    | two.si  | dec | t        |           |     |         |

# Visualize the null constructed with permutation

ggplot(tidied.bees,aes(x = statistic)) +
 geom\_histogram(fill="white", color="deeppink4")



## Visualize the null constructed with permutation

```
ggplot(tidied.bees,aes(x = statistic)) +
    geom_histogram(fill="white", color="deeppink4") +
    geom_vline(xintercept = -1.4673, color="red") +
    geom_vline(xintercept = 1.4673, color="red")
```



### Step Three: calculate our Pvalue

- > t.from.data <- -1.4673</pre>
- > sum(tidied.bees\$statistic >= abs(t.from.data)) -> upper.tail
- > sum(tidied.bees\$statistic <= -1\*abs(t.from.data)) -> lower.tail

```
> (upper.tail + lower.tail) / nrow(tidied.bees)
[1] 0.1942
```

With P=0.1942, we fail to reject the null hypothesis. We have no evidence that bumblebee species a and b have different lengths.

Pop Quiz: P-values for a permutation test can never be 0. Why?

### Note on computations shown here

bee.ttests <- map(bee.perms\$perm, ~t.test(lengths~species, data=.))</pre>

bee.results <- map(bee.perms\$perm, ~<only certain functions> )

### Note the R package coin...

Pre-dated the tidyverse but **very** convenient for simple tests

```
library(coin)
### Permutation test for two arbitrary samples
independence_test(b ~ a, data)
```

```
independence_test(lengths ~ species, data = bees)
```

Asymptotic General Independence Test

```
data: lengths by species (a, b)
Z = -1.4337, p-value = 0.1517
alternative hypothesis: two.sided
```

### coin for contingency tables

> sparrows %>% group\_by(Sex, Survival) %>% tally() -> sex.survival Sex Survival n 1 Female Alive 21 2 Female Dead 28 Male Alive 51 3 4 Male Dead 36 > xtabs(n ~ Sex + Survival, data = sex.survival) -> sex.survival.table Survival Alive Dead Sex 21 28 Female Male 51 36

>independence\_test(sex.survival.table)
Asymptotic General Independence Test

data: Survival by Sex (Female, Male) Z = -1.7617, p-value = 0.07813 alternative hypothesis: two.sided

### Exercise break

### Bootstrapping

Bootstrapping uses resampling from the data with replacement to approximate the sampling distribution of an estimate

Use bootstrapping to calculate CI and standard error



### As aside, this is jackknifing



### WA acidic rain estimation, the "regular way"

> rain <- tibble(pH = c(4.73, 5.28, 5.06, 5.16, 5.25, 5.11, 4.79))</pre>

```
> mean(rain$pH)
[1] 5.054286
```

```
## 95% CI as estimate +- t_0.025*SE
> se <- sd(rain$pH)/sqrt(nrow(rain))
> df <- nrow(rain) -1
> qt(0.025,df) * se
[1] -0.1992792
```

Estimate for WA rain acidity is 5.05 +- 0.199

BUT our assumptions for this approach were not met, so we should use the bootstrap

### Using the bootstrap to estimate rain pH

> set.seed(199)

> devtools::install\_github('jtleek/slipper')

> rain.boot <- slipper(rain, mean(pH), B=10000)</pre>

- > head(rain.boot)
- type value
- 1 observed 5.054286
- 2 bootstrap 5.090000
- 3 bootstrap 5.115714
- 4 bootstrap 4.984286
- 5 bootstrap 5.015714
- 6 bootstrap 5.164286

> rain.boot %>% filter(type == "bootstrap") %>% summarize(mean(value))
 mean(value)

1 5.054452

# Visualizing the bootstrap sampling distribution of the mean

> rain.boot %>%

filter(type == "bootstrap") %>%
ggplot(aes(x = value)) + geom\_histogram(fill = "white", color ="steelblue")



# Visualizing the bootstrap sampling distribution of the mean

> rain.boot %>%

filter(type == "bootstrap") %>%
ggplot(aes(x = value)) + geom\_histogram(fill = "white", color ="steelblue")+
geom\_vline(xintercept=5.054286, color="red", size=1.5) +
geom\_vline(xintercept=5.054452, color="wheat")



## All together, computing the bootstrap estimates

Our bootstrap estimate: pH has a mean of 5.053 with a 95% CI of [4.89, 5.19]

"Regular" bootstrap was 5.05 with 95% CI of [4.85, 5.24]

# What might we want to estimate from the bee data?

Estimate for *difference of means* 

Confidence interval for *difference of means* 

# Generate bootstraps when data frame has multiple samples

. . .

> bees %>% filter(species == "a") -> bees.a

```
> bees.a %>%
```

observed 4.600

bootstrap 4.575

bootstrap 4.200

bootstrap 4.650

```
slipper(mean(lengths), B=1e4) %>%
mutate(species = "a") -> a.boot
    type value species
```

а

а

а

a

```
> bees %>% filter(species == "b") -> bees.b
> bees.b %>%
    slipper(mean(lengths), B=1e4) %>%
    mutate(species = "b") -> b.boot
    type value species
1 observed 4.98 b
2 bootstrap 5.10 b
3 bootstrap 4.84 b
4 bootstrap 4.88 b
```

• • •

1

2

3

### con't

```
full.boot <- rbind(a.boot, b.boot)</pre>
head(full.boot)
      type value species
1 observed 4.600
                      a
2 bootstrap 4.750
                      а
3 bootstrap 4.450
                      а
full.boot %>%
   filter(type == "bootstrap") %>%
   group_by(species) %>% ### Add unique ID per group line
   mutate(n = 1:n()) %>% ### ""
   spread(species, value)
                              b
          type n a
        <fctr> <int> <dbl> <dbl>
   1 bootstrap 1 4.750 5.10
   2 bootstrap 2 4.450 4.84
   3 bootstrap 3 4.500 4.88
```

### con't

The bootstrap difference in mean bee lengths is -0.382 with a 95% bootstrap CI of [-0.815, 0.07]

Pop quiz! Recall our permutation test gave P=0.19. Is the bootstrap consistent?

### Exercise break

### Multiple testing

https://xkcd.com/882/

Run tests until you get a significant result = **no**.

- Data dredging
- P-hacking
- Data fishing
- Data snooping

# False positive rate increases with more tests

#### Single test

P(false positive) =  $\alpha$ 

P(not false positive) =  $1 - \alpha$ 

#### N tests

P(no false positives) =  $(1 - \alpha)^N$ P(at least 1 false positive) =  $1 - (1 - \alpha)^N$ 

> For N=20 and  $\alpha$ =0.05, P(at least 1 false positive) = 65% For N=100 and  $\alpha$ =0.05, P(at least 1 false positive) = 99%

#### Example: Many tests on iris

versicolor <- iris %>% filter(Species == "versicolor")
virginica<- iris %>% filter(Species == "virginica")
setosa <- iris %>% filter(Species == "setosa")

- > t.test(versicolor\$Sepal.Length, virginica\$Sepal.Length)\$p.value
  [1] 1.866144e-07
- > t.test(versicolor\$Sepal.Length, setosa\$Sepal.Length)\$p.value
  [1] 3.746743e-17
- > t.test(virginica\$Sepal.Length, setosa\$Sepal.Length)\$p.value
  [1] 3.966867e-25
- > t.test(versicolor\$Sepal.Width, virginica\$Sepal.Width)\$p.value
  [1] 0.001819483
- > t.test(versicolor\$Sepal.Width, setosa\$Sepal.Width)\$p.value
  [1] 2.484228e-15
- > t.test(virginica\$Sepal.Width, setosa\$Sepal.Width)\$p.value
  [1] 4.570771e-09

- > t.test(versicolor\$Petal.Length, virginica\$Petal.Length)\$p.value
  [1] 4.900288e-22
- > t.test(versicolor\$Petal.Length, setosa\$Petal.Length)\$p.value
- [1] 9.934433e-46
  > t.test(virginica\$Petal.Length, setosa\$Petal.Length)\$p.value
  [1] 9.269628e-50
- > t.test(versicolor\$Petal.Width, virginica\$Petal.Width)\$p.value
  [1] 2.111534e-25
- > t.test(versicolor\$Petal.Width, setosa\$Petal.Width)\$p.value
  [1] 2.717008e-47
- > t.test(virginica\$Petal.Width, setosa\$Petal.Width)\$p.value
- [1] 2.437136e-48

### Two broad types of error rates

#### Family-wise error rate (FWER)

- Probability of having at least one false positive among all tests
- Probability of rejecting at least one true null
- $\circ$  Corrections control FWER <=  $\alpha$

#### False discovery rate (FDR)

- Expected proportion of false positives among rejected hypotheses
- Rate that false discoveries occur
- FP / (FP + TP)
- $\circ$  Corrections control FDR <=  $\alpha$

### Controlling the FWER

Bonferroni correction is the most common

• For *m* tests, change  $\alpha \rightarrow \alpha/m$  and assess significance

My 6 tests gave P = {0.01, 0.03, 0.004, 0.027, 0.0006, 0.048}  $\circ 0.05 \rightarrow 0.05/6 \rightarrow My \text{ new } \alpha \text{ is } 0.0083$  $\circ P = \{0.01, 0.03, 0.004, 0.027, 0.0006, 0.048\}$ 

Can alternatively multiply P-values by *m* and use original α (0.05) • raw P = {0.01, 0.03, 0.004, 0.027, 0.0006, 0.048} • corrected P = {0.06, 0.18, 0.024, 0.162 0.0036, 2.88 1.0} The Holm (BH) method uses a *stepwise* procedure to control FWER

Uses a *stepwise* (step-down) procedure to control FWER

- 1. Order P-values from *m* tests from smallest to largest and rank *k*
- 2. For a given  $\alpha$ , find the **smallest** k where  $P_k > \alpha/(m+1-k)$
- 3. Reject Ho for all  $P_1...P_{k-1}$ 
  - 1. Fail to reject Ho for all  $P_k...P_m$

# Holm (Bonferroni-Holm) FWER correction

#### $\mathsf{P} = \{0.01, 0.03, 0.004, 0.027, 0.0006, 0.048\}$

| Raw P  | α/(m-k+1)                    |                               |
|--------|------------------------------|-------------------------------|
| 0.0006 | 0.05/(6-1+1) = 0.0083        | <b>P</b> is smaller, continue |
| 0.004  | 0.05/(6-2+1) = 0.01          | <b>P</b> is smaller, continue |
| 0.01   | 0.05/(6-3+1) = 0.0125        | <b>P</b> is smaller, continue |
| 0.027  | 0.05/(6-4+1) = 0.0125        | P is greater, STOP            |
| 0.03   |                              |                               |
| 0.048  |                              |                               |
|        | $\square$ P = {0.01, 0.03, 0 | 0.004, 0.027, 0.0006, 0.048   |

### Holm FWER correction with corrected P

$$P_{\text{corrected}} = m^* p_{k, k=1} \\ = \max[p_{(k-1)}, p_k^*(m-k+1)], k>1$$

| Raw P  | Holm-corrected P                                            |
|--------|-------------------------------------------------------------|
| 0.0006 | 0.0006 * 6 = <b>0.0036</b>                                  |
| 0.004  | 0.004 * (6-2+1) = 0.02<br>max(0.0036, 0.02) = <b>0.02</b>   |
| 0.01   | 0.01 * (6-3+1) = 0.04<br>max(0.02, 0.04) = <b>0.04</b>      |
| 0.027  | 0.027 * (6-4+1) = 0.081<br>max(0.04, 0.081) = <b>0.081</b>  |
| 0.03   | 0.03 * (6-5+1) = 0.06<br>max(0.081, 0.06) = <b>0.081</b>    |
| 0.048  | 0.048 * (6-6+1) = 0.048<br>max(0.081, 0.048) = <b>0.081</b> |

### Controlling error with FDR

#### FWER control procedures are highly conservative

- Bonferroni is the most severe
- Guarantees low false positive rate at the cost of a high false negative rate

#### FDR control procedures are much more powerful

- You end up with more significant results, at the cost of a higher false positive rate
- Invented as a response to the severe conservatism of Bonferroni, etc.

### Controlling FDR with Benjamini-Hotchberg ("BH")

This is also a stepwise ("step-up") procedure

- 1. Determine the FDR you are willing to live with with, Q
- 2. Order P-values from *m* tests from smallest to largest and rank
- 3. For a given Q, find the **largest** k where  $P_k \le Q * k/m$
- 4. Reject all Ho for  $P_1...P_k$ 
  - 1. Fail to reject Ho for  $P_{k+1}...P_m$

### BH FDR procedure

#### $\mathsf{P} = \{0.01, 0.03, 0.004, 0.027, 0.0006, 0.048\}$

| Raw P  | α * k/m           |                    |
|--------|-------------------|--------------------|
| 0.0006 |                   |                    |
| 0.004  |                   |                    |
| 0.027  |                   |                    |
| 0.03   |                   |                    |
| 0.01   |                   |                    |
| 0.048  | 0.05 * 6/6 = 0.05 | P is smaller, STOP |
|        |                   |                    |

 $\mathsf{P} = \{0.01, 0.03, 0.004, 0.027, 0.0006, 0.048\}$ 

### FDR correction with corrected P

 $P_{\text{corrected}} = p_{k, k} = m$ = min[ p<sub>(k+1)</sub>, p<sub>k</sub>\*(m/k) ], k<m

| Raw P  | FDR-corrected P                                             |
|--------|-------------------------------------------------------------|
| 0.0006 | 0.0006 * 6/1 = 0.0036<br>min(0.012, 0.0036) = <b>0.0036</b> |
| 0.004  | 0.004 * 6/2 = 0.012<br>min(0.02, 0.012) = <b>0.012</b>      |
| 0.01   | 0.01 * 6/3 = 0.02<br>min(0.036, 0.02) = <b>0.02</b>         |
| 0.027  | 0.027 * 6/4 = 0.0405<br>min(0.036, 0.0405) = <b>0.036</b>   |
| 0.03   | 0.03 * 6/5 = 0.036<br>min(0.048, 0.036) = <b>0.036</b>      |
| 0.048  | 0.048                                                       |

#### R makes it super easy

p.values <- c(0.0006, 0.004, 0.01, 0.027, 0.03, 0.048)

### Holm is default
p.adjust(p.values)
[1] 0.0036 0.0200 0.0400 0.0810 0.0810 0.0810

### Specify Bonferroni
p.adjust(p.values, method = "bonferroni")
[1] 0.0036 0.0240 0.0600 0.1620 0.1800 0.2880

### Specify as bonf for when you can't remember if 2 r's or 2 n's
p.adjust(p.values, method = "bonf")
[1] 0.0036 0.0240 0.0600 0.1620 0.1800 0.2880

```
### Specify FDR
p.adjust(p.values, method = "fdr")
[1] 0.0036 0.0120 0.0200 0.0360 0.0360 0.0480
```

# Use sum() to determine number of significant results

```
p.values <- c(0.0006, 0.004, 0.01, 0.027, 0.03, 0.048)
alpha <- 0.05
### Holm
sum( p.adjust(p.values) <= alpha )
[1] 3
### Bonferroni
sum( p.adjust(p.values, method = "bonf") <= alpha)
[1] 2
### FDR
sum( p.adjust(p.values, method = "fdr") <= alpha)
[1] 6</pre>
```

### Running multiple tests in R

pairwise.t.test(response, grouping)
pairwise.wilcox.test(response, grouping)

> pairwise.t.test(iris\$Sepal.Width, iris\$Species)

Pairwise comparisons using t tests with pooled SD

data: iris\$Sepal.Width and iris\$Species

```
setosa versicolor
versicolor < 2e-16 -
virginica 9.1e-10 0.0031
```

P value adjustment method: holm

### Specify correction with "p.adj"

> pairwise.t.test(iris\$Sepal.Width, iris\$Species, p.adj = "fdr" )

Pairwise comparisons using t tests with pooled SD

data: iris\$Sepal.Width and iris\$Species

setosa versicolor versicolor < 2e-16 virginica 6.8e-10 0.0031

P value adjustment method: fdr

### The triumphant return of broom!

> pairwise.t.test(iris\$Sepal.Width, iris\$Species, p.adj = "fdr") %>% tidy()

group1 group2 p.value 1 versicolor setosa 5.497468e-17 2 virginica setosa 6.808435e-10 4 virginica versicolor 3.145180e-03

```
### How many are significant at 0.05?
pairwise.t.test(iris$Sepal.Width, iris$Species, p.adj = "fdr") %>%
    tidy() %>%
    mutate(sig = p.value <= 0.05) %>%
    group_by(sig) %>% tally()
    sig n
    <lgl> <int>
1 TRUE 3
```

### ENTIFIC **Reports**

### Genome-wide association study of aggressive penavior in chicker age of GWAS

Qiao Ye<sup>1,2</sup>, Haiping Xu<sup>1,2</sup>, Wei Luo<sup>1,2</sup>, Qinghua Nie<sup>1,2</sup> & Xiguan Zhang<sup>1,2</sup>

| Abbreviation | Phenotype Description                                                                              | Classification | Mean ± SD       |
|--------------|----------------------------------------------------------------------------------------------------|----------------|-----------------|
| T1           | Number of fighting times<br>during the whole recording<br>period (16 days)                         | Fighting times | 14.69±11.24     |
| T2           | Number of fighting times in<br>days with frequencies not<br>less than 4 times per day              | Tighting times | 4.64±8.63       |
| Т3           | Number of days for chicken showed fighting                                                         |                | $7.28\pm3.53$   |
| T4           | Number of days for chicken<br>showed fighting with<br>frequencies not less than 4<br>times per day | Fighting days  | $0.89 \pm 3.53$ |

Table 1. Four aggressive-behaviour phenotypes measured traits in male chickens.

### The age of GWAS



Figure 1. Manhattan plots of genome-wide association study on chicken aggressive-behaviour measured traits from T1 to T4 for all the SNPs.

The associated values (in terms of -log10P) are shown by chromosomes.

The blue highlighted line indicates genome-wide association (P = 4.6E-6),

and the red highlighted line indicates significance with a *P*-value threshold of the 5% Bonferroni genome-wide significance (*P* = 2.3E-7).

### Exercise break