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General	notes
Results	means	the	literal	results	of	the	test
◦ Value	of	the	test	statistic
◦ P-value
◦ Estimate,	CI

Conclusionsmeans	our	interpretation	of	those	results
◦ If	P	>	alpha
◦ Fail	to	reject	Ho,	no	evidence	in	favor	of	Ha

◦ If	P	<=	alpha,
◦ Reject	Ho,	found	evidence	in	favor	of	Ha,	make	directional	conclusion	if	possible



Our	bag	of	tests
Numeric	data:	t-tests
◦ One	sample/paired
◦ Two	sample

Categorical	data
◦ One	categorical	variable	with	two	levels:	Binomial
◦ One	categorical	variable	with	>two	levels:	Chi-squared	goodness	of	fit
◦ Two	categorical	variables:	Contingency	table
◦ Chi-squared	for	large	samples
◦ Fisher's	exact	test	for	small	samples



Nonparametric	tests
Make	no*	assumptions	about	how	your	samples	are	distributed
◦ Also	known	as	distribution-free tests

Lower	false	positive	rate	than	parametric	methods	when	
assumptions	not	met

Less	powerful	than	parametric	methods

Used	primarily	when	sample	sizes	are	small	or	non-normal	(for	a	
t-test)



Our	new	bag	of	tests
One	sample	or	paired	t-test
◦ Sign	test
◦ Wilcoxon	signed-rank	test

Two	sample	t-test
◦ Mann	Whitney	U-test	(Wilcoxon	rank	sum	test)



Many	nonparametric	tests	are	based	on		
data	ranks

X
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The	sign	test	for	single	numeric	samples
H0:	The	median	of	a	sample	is	equal	to	<null	median>

HA:	The	median	of	a	sample	is	not	equal	to	<null	median>

Procedure:
◦ Determine	your	null	median
◦ Assign	each	value	in	your	sample	as	+	or	- if	above	or	below	median
◦ Test	whether	there	are	same	number	of	+,	-



Example:	Sign	test
An	environmental	biologist	measured	the	pH	of	rainwater	on	7	different	
days	in	Washington	state	and	wants	to	know	if	rainwater	in	the	region	can	
be	considered	acidic	(<	pH	5.2).
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The	sign	test	is	a	binomial	test	with	
p=0.5
H0:	The	median	pH	of	WA	rain	is	5.2.

HA:	The	median	pH	of	WA	rain	is	less	then	5.2
> binom.test(2, 7, 0.5, alternative = "less")
Exact binomial test

data: 2 and 7
number of successes = 2, number of trials = 7, p-value = 0.4531
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.03669257 0.70957914
sample estimates:
probability of success

0.2857143



Results	and	conclusions

Our	test	gave	P=0.4531.	This	is	greater	than	0.05	so	we	fail	
to	reject the	null	hypothesis.	We	have	no	evidence	that	
rainwater	in	WA	state	is	acidic.



Sign	test	in	R
rain <- tibble(pH = c(4.73, 5.28, 5.06, 5.16, 5.25, 5.11, 4.79))

rain %>% mutate(sign = sign(5.2 - pH)) 
pH sign

<dbl> <dbl>
1 4.73 1
2 5.28 -1
3 5.06 1
4 5.16 1
5 5.25 -1
6 5.11 1
7 4.79 1

rain %>% mutate(sign = sign(5.2 - pH)) %>% group_by(sign) %>% tally()
sign n

<dbl> <int>
1 -1 2
2 1 5



See	one,	do	one



Wilcoxon	signed-rank	test
Updated	version	of	sign	test	that	also	considers	magnitude

pH Sign

4.73 -

5.28 +

5.06 -

5.16 -

5.25 +

5.11 -

4.79 -



Adding	ranks	to	the	procedure

pH Sign
4.73 -1
5.28 1
5.06 -1
5.16 -1
5.25 1
5.11 -1
4.79 -1

H0:	The	median	pH	of	WA	rain	is	5.2.
HA:	The	median	pH	of	WA	rain	is	not	then	5.2

|x – null|
0.47	

0.08

0.14

0.04

0.05

0.09

0.41

rank
7	

3

5

1

2

4

6



Compute	the	test	statistic	W	(R)
W	=	min(sum	negative	sign	ranks,	sum	positive	sign	ranks)

Negative	sign	ranks:
◦ 7+5+1+4+6	=	23

Positive	sign	ranks:
◦ 3+2	=	5

### Two sided P-value ###
### psignrank(w, n) ###
> 2*psignrank(5,7)
[1] 0.15625 

Sign rank

-1 7	

1 3

-1 5

-1 1

1 2

-1 4

-1 6



Wilcoxon	signed-rank,	the	long	way
> rain %>% mutate(sign = sign(5.2 - pH), rank = rank(abs(5.2 - pH))) 

pH sign rank
<dbl> <dbl> <dbl>

1 4.73 1 7
2 5.28 -1 3
3 5.06 1 5
4 5.16 1 1
5 5.25 -1 2
6 5.11 1 4
7 4.79 1 6

> rain %>% mutate(sign = sign(5.2 - pH), rank = rank(abs(5.2 - pH))) %>% 
group_by(sign) %>% summarize(sum(rank))

sign `sum(rank)`
<dbl> <dbl>

1 -1 5
2 1 23

> psignrank(5, nrow(rain))
[1] 0.078125



Wilcoxon	signed-rank,	the	obvious	way
> rain <- tibble(pH = c(4.73, 5.28, 5.06, 5.16, 5.25, 5.11, 
4.79))

> wilcox.test(rain$pH, mu = 5.2)
Wilcoxon signed rank test

data: rain$pH
V = 5, p-value = 0.1563
alternative hypothesis: true location is not equal to 5.2



Wilcoxon	signed-rank	is	not	foolproof
Although	nonparametric,	assumes	population	are	
symmetric	around	the	median	(no	skew)

This	is	hard	to	meet,	so	recommendation	is	to	use	the	sign	
test.



See	one,	do	one



Mann-Whitney	U	test	(aka	Wilcoxon	
rank	sum)
Nonparametric	test	to	compare	two	numeric	samples

Assumes	samples	have	the	same	shape	and	detects	a	shift
between	distributions.

H0:	Sample	1	and	sample	2	have	the	same	underlying	distribution	location.
HA:	Sample	1	and	sample	2	have	different	(>/<)	underlying	distribution	location.

2

(a )   H  : A = B (b)   H  : A > B

sh ift

dist r ibu t ion  A  = dist r ibu t ion  B dist r ibu t ion  Adist r ibu t ion  B

0 1

Figure 2 : Illustration of H0 : A = B versus H1 : A > B.

The Wilcoxon test is based upon ranking the nA + nB observations of the
combined sample. Each observation has a ra nk : the smallest has rank 1, the
2nd smallest rank 2, and so on. The Wilcoxon rank-sum test statistic is the
sum of the ranks for observations from one of the samples. Let us use sample
A here and use wA to denote the observed rank sum and WA to represent the
corresponding random variable.

wA = sum of the ranks for observations from A.

Example 1 con t. We have sorted the combined data set into ascending or-
der and used vertical displacement as well as ethnic group labels to make very
clear which sample an observation comes from (“NA” for the Native American
group and “Ca” for the Caucasian group). The rank of an observation in the
combined sample appears immediately below the label.

7.76 8.16 8.50 8.63 8.65 8.83 9.487.20 7.70 8.10 8.14 8.20 8.25 8.27 8.32 9.00

Race Ca Ca NA Ca Ca NA Ca Ca Ca Ca NA NA NA NA Ca NA
Rank : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The sum of the ranks for the Native American group is

wNA = 3 + 6 + 11 + 12 + 13 + 14 + 16 = 75.

How do we obtain the P -value corresponding to the rank-sum test statistic
wA? To answer this question we must first consider how rank sums behave
under H0, and how they behave under H1. Fig. 3 depicts two situations using
samples of size nA = nB = 5 and plotting sample A observations with a “•”
and sample B observations with an “o”.

Suppose that H0 : A = B is true. In this case, all n = nA + nB observations
are being drawn from the same distribution and we might expect behavior
somewhat like Fig. 3(a) in which the pattern of black and white circles is
random. The set of ranks for n observations are the numbers 1, 2, . . . , n.



The	tedious	steps	to	MW-U	test
1.	Pool	the	data	and	rank	everything

2.	Sum	ranks	for	group	1	and	group	2	each	à R1 and	R2
3.	Compute	U statistic	as	min(U1,U2)	from	ranks:
◦ 𝑈" = 𝑅" −

&' &'("
)

◦ 𝑈" +	𝑈) = 	𝑛"𝑛)	

4.	Get	the	pvalue in	R:				pwilcox(U, n1, n2)



Minimal	example

8 1

10 2

15 3

16 4

17 5

22 6

28 7

R1	=	1+3+5	=	9
R2	=	2+4+6+7	=	19

Sample	1:	8,	15,	17
Sample	2:	22,	10,	16,	28

U1 =	R1 – [n1(n1+1)/2]
=	9	– [3(4)/2]	=	3

U2 =	n1n2 – U1
=	3*4		- 3	=	9

### One tailed P ###
> pwilcox(3, 3, 4)
[1] 0.2 



Minimal	example… in	R

> wilcox.test(c(8, 15, 17), c(22, 10, 16, 28))

Wilcoxon rank sum test

data: c(8, 15, 17) and c(22, 10, 16, 28)
W = 3, p-value = 0.4
alternative hypothesis: true location shift is not equal to 0



Major	caveat:	ties	in	data

Sample	1:	8,	15,	17

Sample	2:	22,	10,	16,	17

8 1

10 2

15 3

16 4

17 5.5

17 5.5

22 7

Assign	all	values	in	tie	the	average rank

Test	assumes	all	data	is	ordinal



Example	in	R,	with	ties	
> wilcox.test(c(8, 15, 17), c(22, 10, 16, 17))

Wilcoxon rank sum test with continuity correction

data: c(8, 15, 17) and c(22, 10, 16, 17)
W = 3.5, p-value = 0.4755
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(c(8, 15, 17), c(22, 10, 16, 17)) :
cannot compute exact p-value with ties



See	one,	do	one



What	is	a	dataset?
A	collection	of	values

Each	value belongs	to	a	variable and	an observation

Variables	contain	all	values	that	measure	the	same	
underlying	attribute	("thing")

Observations	contain	all	values	measured	on	the	same	unit	
across	attributes.

Hadley	Wickham
https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html



The	iris	dataset	(what	else?)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Observation	

Variable	

Value



This	is	a	tidy	dataset
Each	variable	forms	a	column.

Each	observation	forms	a	row.

Each	type	of	observational	unit	forms	a	table.

Tidy	data	provides	a	consistent	approach	to	
data	management	that	greatly	facilitates	
downstream	analysis	and	viz



Messy	vs	tidy	data

What	are	the	variables in	this	data?
What	are	the	observations in	this	data?

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely



Do	it	yourself:	Convert	to	tidy	data

survived died
drug 15 3

placebo 4 11

treatment outcome count
drug survived 15

placebo survived 4
drug died 3

placebo died 11



The	fundamental	verbs	of	tidyr

gather() Gather	multiple columns	into	key:value pairs
spread() Spread key:value pairs	over	multiple	columns
separate() Separate	columns
unite() Join	columns



gather() makes	wide	tables	narrow

data
tree treat t_152 t_174 t_201 t_227 t_258
1 ozone 4.51 4.98  5.41  5.90 6.15
2 ozone 4.24  4.20  4.68  4.92  4.96
3 ozone   3.98 4.36  4.79  4.99  5.03

tree treat time measure
1 ozone t_152   4.51
1 ozone   t_174   4.98
1 ozone   t_201   5.41
1 ozone   t_227   5.90
1 ozone   t_258   6.15
...

data %>% gather(time, measure, t_152:t_258)
KEY VALUE



spread() makes	narrow	tables	wide

data %>% spread(time, measure)

tree treat time measure
1 ozone t_152   4.51
1 ozone   t_174   4.98
1 ozone   t_201   5.41
1 ozone   t_227   5.90
1 ozone   t_258   6.15
...

data
tree treat t_152 t_174 t_201 t_227 t_258
1 ozone 4.51 4.98  5.41  5.90 6.15
2 ozone 4.24  4.20  4.68  4.92  4.96
3 ozone   3.98 4.36  4.79  4.99  5.03



tree treat t seconds measure
1 ozone t 152 4.51
1 ozone t 174 4.98
1 ozone t 201 5.41
1 ozone t 227 5.90
1 ozone t 258 6.15
...

separate() separates	columns

data %>% separate(time, into=c("t", "seconds"), sep = "_")

tree treat time measure
1 ozone t_152   4.51
1 ozone   t_174   4.98
1 ozone   t_201   5.41
1 ozone   t_227   5.90
1 ozone   t_258   6.15
...



tree treat t seconds measure
1 ozone t 152 4.51
1 ozone t 174 4.98
1 ozone t 201 5.41
1 ozone t 227 5.90
1 ozone t 258 6.15
...

unite() unites	columns

tree treat time measure
1 ozone t_152   4.51
1 ozone   t_174   4.98
1 ozone   t_201   5.41
1 ozone   t_227   5.90
1 ozone   t_258   6.15
...

data %>% unite(time, t, seconds)



tree treat t seconds measure
1 ozone t 152 4.51
1 ozone t 174 4.98
1 ozone t 201 5.41
1 ozone t 227 5.90
1 ozone t 258 6.15
...

unite() unites	columns

data %>% unite(time, t, seconds, sep = "" )

tree treat time measure
1 ozone t152   4.51
1 ozone   t174   4.98
1 ozone   t201   5.41
1 ozone   t227   5.90
1 ozone   t258   6.15
...


