Nonparametric methods and tidyr

BI05312 FALL2017

STEPHANIE J. SPIELMAN, PHD

General notes

Results means the literal results of the test

- Value of the test statistic
- P-value
- Estimate, Cl

Conclusions means our interpretation of those results

- If P > alpha
 - Fail to reject Ho, no evidence in favor of Ha
- If P <= alpha,</p>
 - Reject Ho, found evidence in favor of Ha, make directional conclusion if possible

Our bag of tests

- Numeric data: *t*-tests
- One sample/paired
- Two sample

Categorical data

- One categorical variable with two levels: Binomial
- One categorical variable with >two levels: Chi-squared goodness of fit
- Two categorical variables: Contingency table
 - Chi-squared for large samples
 - Fisher's exact test for small samples

Nonparametric tests

• Also known as *distribution-free* tests

Lower *false positive* rate than parametric methods when assumptions not met

Less powerful than parametric methods

Used primarily when sample sizes are small or non-normal (for a *t*-test)

Our new bag of tests

One sample or paired *t*-test

- Sign test
- Wilcoxon signed-rank test

Two sample *t*-test

• Mann Whitney U-test (Wilcoxon rank sum test)

Many nonparametric tests are based on data ranks

X	Ranks
10.8	4
13.5	6
9.1	3
11.5	5
15.7	7
4.3	1
8.4	2

The sign test for single numeric samples

 H_0 : The median of a sample is equal to <null median>

H_A: The median of a sample is not equal to <null median>

Procedure:

- Determine your null median
- Assign each value in your sample as + or if above or below median
- Test whether there are same number of +, -

Example: Sign test

An environmental biologist measured the pH of rainwater on 7 different days in Washington state and wants to know if rainwater in the region can be considered acidic (< pH 5.2).

рН	Sign	
4.73	-	
5.28	+	
5.06	-	5+
5.16	-	2-
5.25	+	
5.11	-	
4.79	-	

The sign test is a binomial test with p=0.5

 H_0 : The median pH of WA rain is 5.2.

H_A: The median pH of WA rain is less then 5.2

> binom.test(2, 7, 0.5, alternative = "less")
Exact binomial test

Results and conclusions

Our test gave P=0.4531. This is greater than 0.05 so we **fail to reject** the null hypothesis. We have **no evidence that** rainwater in WA state is acidic.

```
Sign test in R
```

```
rain <- tibble(pH = c(4.73, 5.28, 5.06, 5.16, 5.25, 5.11, 4.79))
```

```
rain %>% mutate(sign = sign(5.2 - pH))
        pH sign
     <dbl> <dbl>
   1 4.73
               1
   2 5.28 -1
           1
1
-1
   3 5.06
   4 5.16
   5 5.25
          1
   6 5.11
              1
   7 4.79
rain %>% mutate(sign = sign(5.2 - pH)) %>% group_by(sign) %>% tally()
      sign
              n
```

<dbl> <int>
1 -1 2
2 1 5

See one, do one

Wilcoxon signed-rank test

Updated version of sign test that also considers magnitude

рН	Sign
4.73	-
5.28	+
5.06	-
5.16	-
5.25	+
5.11	-
4.79	-

Adding ranks to the procedure

 H_0 : The median pH of WA rain is 5.2.

 H_A : The median pH of WA rain is not then 5.2

рН	Sign	<i>x</i> – null	rank
4.73	-1	0.47	7
5.28	1	0.08	3
5.06	-1	0.14	5
5.16	-1	0.04	1
5.25	1	0.05	2
5.11	-1	0.09	4
4.79	-1	0.41	6

Compute the test statistic W (R)

W = min(sum negative sign ranks, sum positive sign ranks)

Negative sign ranks:

○ 7+5+1+4+6 = 23

Positive sign ranks:

• 3**+**2 **= 5**

Two sided P-value
psignrank(w, n)
> 2*psignrank(5,7)
[1] 0.15625

i	i i
Sign	rank
-1	7
1	3
-1	5
-1	1
1	2
-1	4
-1	6

Wilcoxon signed-rank, the long way

> rain %>% mutate(sign = sign(5.2 - pH), rank = rank(abs(5.2 - pH)))

pH sign rank <dbl> <dbl> <dbl> 1 4.73 1 -1 5.28 3 _____1 ______1 5 1 2 4 3 5.06 4 5.16 5 5.25 1 6 5.11 6 7 4.79

> psignrank(5, nrow(rain))
[1] 0.078125

Wilcoxon signed-rank, the obvious way

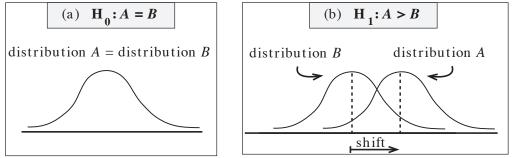
> rain <- tibble(pH = c(4.73, 5.28, 5.06, 5.16, 5.25, 5.11, 4.79))

> wilcox.test(rain\$pH, mu = 5.2)
Wilcoxon signed rank test

data: rain\$pH
V = 5, p-value = 0.1563
alternative hypothesis: true location is not equal to 5.2

Wilcoxon signed-rank is not foolproof

Although nonparametric, assumes population are symmetric around the median (no skew)


This is hard to meet, so recommendation is to use the sign test.

See one, do one

Mann-Whitney U test (aka Wilcoxon rank sum)

Nonparametric test to compare two numeric samples

Assumes samples have the same shape and detects a *shift* between distributions. (a) $H_0:A=B$ (b) $H_1:A>B$

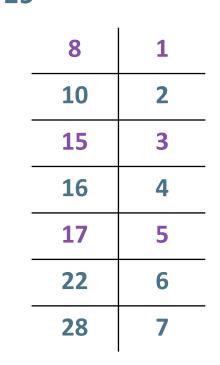
 H_0 : Sample 1 and sample 2 have the same underlying distribution location. H_A : Sample 1 and sample 2 have different (>/<) underlying distribution location.

The tedious steps to MW-U test

1. Pool the data and rank everything

- 2. Sum ranks for group 1 and group 2 each \rightarrow R₁ and R₂
- 3. Compute U statistic as $min(U_1, U_2)$ from ranks:

$$U_1 = R_1 - \frac{n_1(n_1+1)}{2}$$


 $\circ U_1 + U_2 = n_1 n_2$

4. Get the pvalue in R: pwilcox(U, n₁, n₂)

Minimal example

Sample 1: 8, 15, 17 Sample 2: 22, 10, 16, 28 $U_1 = R_1 - [n_1(n_1+1)/2]$ = 9 - [3(4)/2] = 3 $U_2 = n_1 n_2 - U_1$ = 3*4 - 3 = 9 ### One tailed P ### > pwilcox(3, 3, 4)[1] 0.2

R1 = 1+3+5 = 9 R2 = 2+4+6+7 = 19

Minimal example... in R

> wilcox.test(c(8, 15, 17), c(22, 10, 16, 28))

Wilcoxon rank sum test

data: c(8, 15, 17) and c(22, 10, 16, 28)
W = 3, p-value = 0.4
alternative hypothesis: true location shift is not equal to 0

Major caveat: ties in data

Test assumes all data is ordinal	8	1	
-	10	2	
Sample 1: 8, 15, 17	15	3	
Sample 2: 22, 10, 16, 17	16	4	
Accian all values in the average rank	17	5.5	
Assign all values in tie the average rank-	17	5.5	
-	22	7	

Example in R, with ties

> wilcox.test(c(8, 15, 17), c(22, 10, 16, 17))

Wilcoxon rank sum test with continuity correction

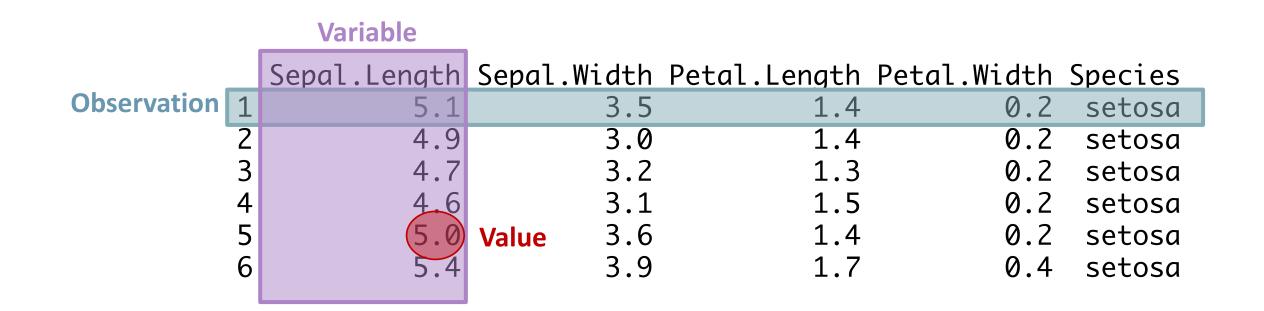
data: c(8, 15, 17) and c(22, 10, 16, 17)
W = 3.5, p-value = 0.4755
alternative hypothesis: true location shift is not equal to 0

Warning message: In wilcox.test.default(c(8, 15, 17), c(22, 10, 16, 17)) : cannot compute exact p-value with ties

See one, do one

What is a dataset?

A collection of **values**

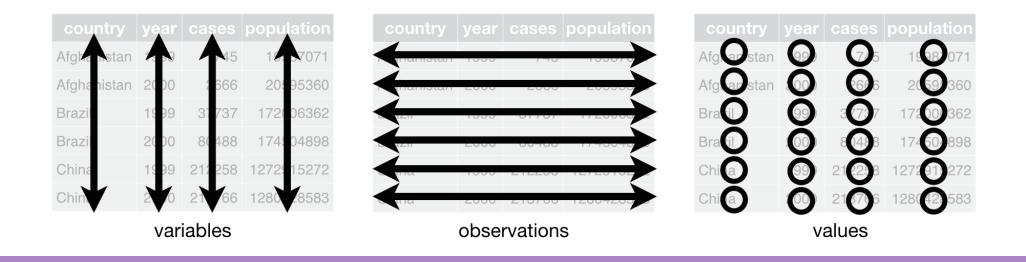

Each value belongs to a variable and an observation

Variables contain all values that measure the same underlying attribute ("thing")

Observations contain all values measured on the same unit <u>across attributes</u>.

Hadley Wickham https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html

The iris dataset (what else?)


This is a tidy dataset

Each variable forms a column.

Each observation forms a row.

Tidy data provides a consistent approach to data management that greatly facilitates downstream analysis and viz

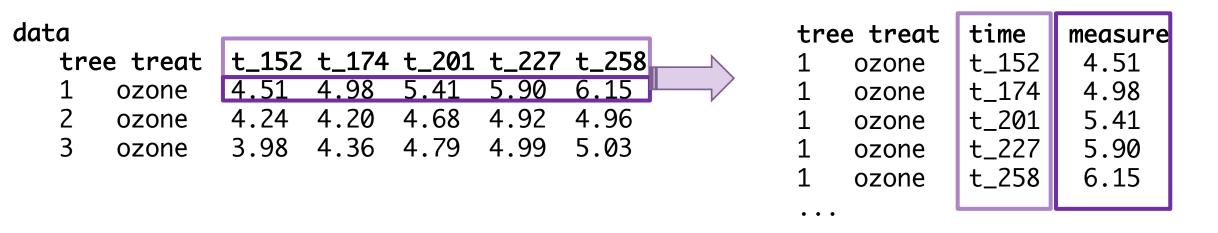
Each type of observational unit forms a table.

Messy vs tidy data

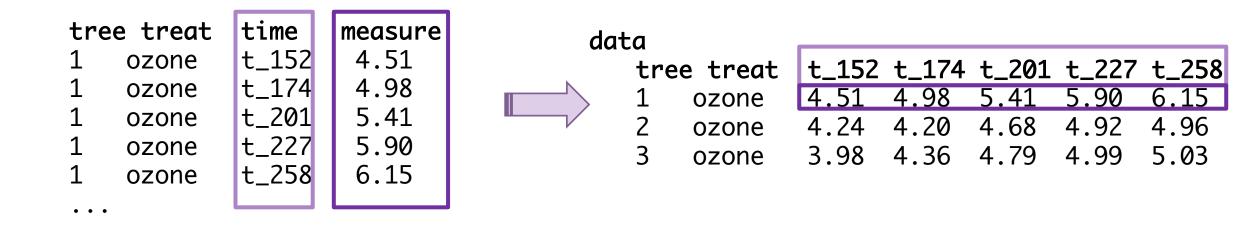
	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

What are the **variables** in this data? What are the **observations** in this data?

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

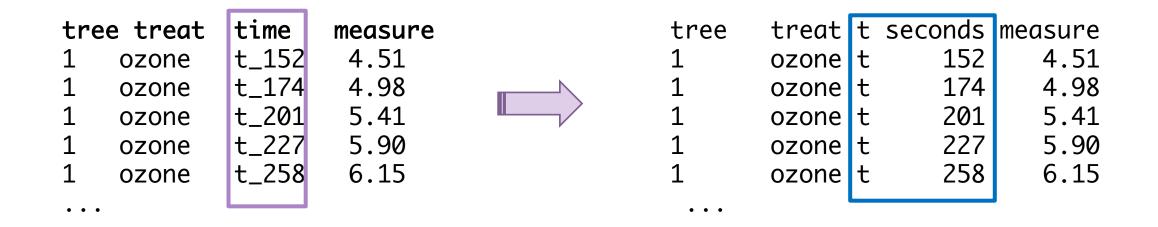

Do it yourself: Convert to tidy data

			treatment	outcome	count
	survived	died	drug	survived	15
drug	15	3	placebo	survived	4
placebo	4	11	drug	died	3
			placebo	died	11

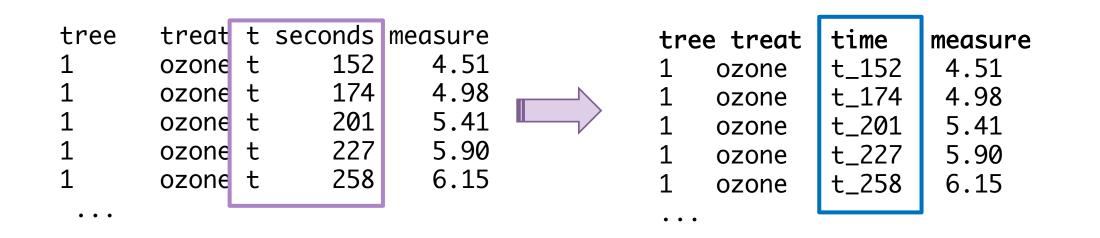

The fundamental verbs of tidyr

gather()	Gather multiple columns into key:value pairs
<pre>spread()</pre>	Spread key:value pairs over multiple columns
<pre>separate()</pre>	Separate columns
unite()	Join columns

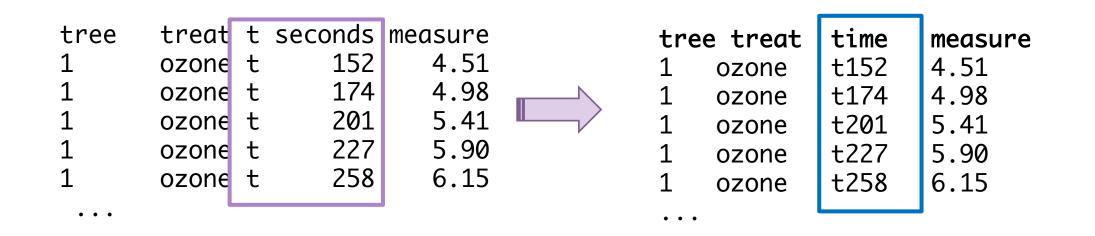
gather() makes wide tables narrow



spread() makes narrow tables wide


data %>% spread(time, measure)

separate() separates columns


data %>% separate(time, into=c("t", "seconds"), sep = "_")

unite() unites columns

data %>% unite(time, t, seconds)

unite() unites columns

data %>% unite(time, t, seconds, sep = "")