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Estimation
An	estimator	is	a	statistic	(~formula)	for	estimating	a	parameter
A	good	estimator	is	unbiased
◦ The	expected	value	(expectation)	of	the	estimator	should	equal	the	parameter	being	
estimated

◦ Mean	of	the	sampling	distribution	of	the	statistic	should	equal	the	parameter	being	
estimated	

A	good	estimator	is	consistent
◦ Increasing	the	sample	size	produces	an	estimate	with	smaller	SE

A	good	estimator	is	efficient
◦ Has	the	smallest	SE	among	any	estimator	you	could	have	chosen



We	are	usually	interested	in	point	
estimate,	SE,	and	CI
Normally-distributed	variable
◦ 𝜇	" = 	 𝑥̅

◦ 𝜎() = ∑ (,-.,̅)01
-23
4.5

◦ Known	σ
◦ SE	=	 6

4�

◦ 95%	CI	=	𝑥̅ ± 𝑍:.:)<𝑆𝐸
◦ Unknown	σ
◦ SE	=	 ?

4�

◦ 95%	CI	=	𝑥̅ ± 𝑡:.:)<𝑆𝐸



Hypothesis	testing	frameworks
t-tests compare	means	for	continuous	quantitative	data

Today	we	will	learn	to	analyze	discrete	count	data	
("proportions"):
◦ Binomial	test
◦ 𝝌2 goodness-of-fit
◦ Contingency	table	analysis
◦ 𝝌2 association/homogeneity	and	Fisher	exact	test



Binomial	test
	𝑃 𝑘	𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 = 	 4

H 𝑝
H 1 − 𝑝 (4.H) = 4

H 𝑝
H𝑞(4.H)

◦ Binomial	coefficient:		 4H = 	 4!
H! 4.H !

Hypothesis	test:
◦ H0 :	The	relative	frequency	of	success	in	the	underlying	population	is	p0
◦ HA :	The	relative	frequency	of	success	in	the	underlying	population	is	not	p0
◦ HA :	The	relative	frequency	of	success	in	the	underlying	population	is	>	/<	p0

Null	proportion	of	
successes	to	test	against



Binomial	test	assumption:	BInS
conditions	are	satisfied

Binary	outcomes

Independent	trials	(outcomes	do	not	influence	each	other)

n is	fixed	before	the	trials	begin

Same	probability	of	success,	p,	for	all	trials



Binomial	test:	Example
In	a	certain	species	of	wasp,	each	wasp	has	a	30%	chance	of	
being	male.	I	collect	12	wasps,	of	which	5	are	male.	Does	my	
sample	show	evidence	that	30%	of	wasps	are	male?	Use	
α=0.05.

In	other	words,	is	the	observed	success	proportion	5/12	(41.67%)	consistent	
with	a	population	whose	probability	of	success	is	0.3?



Verifying	assumptions
Binary	outcomes:	Male	or	female

Independent	trials:	Wasp	sex	does	not	influence	sex	of	
other	wasps

n is	fixed	before	the	trials	begin: I	collect	12	wasps

Same	probability	of	success,	p,	for	all	trials: P(male)	=	0.3	for	
every	wasp



Performing	the	binomial	test
My	sample:
◦ p	=	5/12	=	0.417
◦ n	=	12
◦ X	=	5	 We	generally	say	X	instead	of	k	when	performing	hypothesis	tests,	by	convention

H0 :	The	probability	of	being	a	male	wasp	is	p0 =	0.3

HA:	The	probability	of	being	a	male	wasp	differs	from	p0 =	0.3



The	PMF	for	wasp	sex
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The	sampling	
distribution	for	the	
binomial	test	statistic	is	
binomial:	This	is	
effectively	our	null.



Performing	the	test
Recall,	the	P-value	is	the	probability	of	obtaining	a	result	as	
extreme	or	more
◦ Therefore,	P-value	is	P(number	of	successes	>=5)

	𝑃(𝑋 ≥ 5) = 5)
< 0.3<0.7(5).<) +	 5)

U 0.3U0.7(5).U) + ⋯+ 5)
5) 0.3

5)0.7(5).5))
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n	=	12
X	=	5
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> 1 – pbinom(4, 12, 0.3)
[1] 0.2673445



Conclusions,	round	1
Our	P-value	of	0.276	is	much	greater	than	α.	Therefore	we	
fail	to	reject	the	null	hypothesis	and	we	have	no	evidence	
that	the	population	proportion	of	males	corresponding	to	
our	sample	differs	from	0.3.	



Notes	on	binomial	tests
Computing	two-sided	P-values	is	non-trivial
◦ Binomial	distribution	symmetric	only	when	p=0.5

> binom.test(5, 12, 0.3)
Exact binomial test

data: 5 and 12
number of successes = 5, number of trials = 12, p-value = 0.3614
alternative hypothesis: true probability of success is not equal to 0.3
95 percent confidence interval:
0.1516522 0.7233303

sample estimates:
probability of success

0.4166667

This	is	not	0.276*2!



Computing	the	binomial	standard	error
𝑺𝑬𝒑" = 	 𝒑" 𝟏 − 𝒑" /𝒏�

= 𝟎.𝟒𝟏𝟕(𝟏.𝟎.𝟒𝟏𝟕)
𝟏𝟐

�
=	 0.142

What	is	this	value?
1. The	standard	deviation	of	the	sampling	distribution	of	the	probability	of	success
2. Quantifies	the	precision	of	𝑝̂,	our	estimate	of	the	population	prob.	of	success



Computing	the	binomial	confidence	
interval
Classically,	we	use	the	Wald	method
◦ Note:	Only	"precise"	when	n	is	not	very	large	(>0.8)	or	small	(<0.2)

◦ 𝒑" is	the	estimated	proportion	of	success,	X/n	=	0.417
◦ 𝒁𝟎.𝟎𝟐𝟓 is	1.96

◦ 𝑺𝑬𝒑" = 	
𝒑"(𝟏.𝒑")

𝒏
�

=	 𝟎.𝟒𝟏𝟕(𝟏.𝟎.𝟒𝟏𝟕)
𝟏𝟐

�
=	0.142

𝒑" − 𝒁𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒑" < 𝒑 < 𝒑" + 𝒁𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒑"



Calculating	the	binomial	CI
𝒑" − 𝒁𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒑" < 𝒑 < 𝒑" + 𝒁𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒑"

0.417	– 0.278	<	p	<	0.417	+	0.278		à 0.417	± 0.278
> binom.test(5, 12, 0.3)
Exact binomial test

data: 5 and 12
number of successes = 5, number of trials = 12, p-value = 0.3614
alternative hypothesis: true probability of success is not equal to 0.3
95 percent confidence interval:
0.1516522 0.7233303

sample estimates:
probability of success

0.4166667

R	uses	a	more	exact	method,	the	Clopper-Pearson	interval



Final	conclusions
Our	P-value	of	0.276	is	much	greater	than	α.	Therefore	we	
fail	to	reject	the	null	hypothesis	and	we	have	no	evidence	
that	the	population	proportion	of	males	corresponding	to	
our	sample	differs	from	0.3.	

Our	estimated	proportion	of	success	is	0.417	with	SE	=0.142	
and	a	95%	CI	of	0.417	± 0.278.



Pause:	Binomial	exercise



Use	𝟀2	Goodness-of-fit	test	if	we	do	not	
have	binary	outcomes
Goodness-of-fit	test	asks	if	observed	proportions	are	equal	to	a	null	
proportion

df =	(number	of	categories)	– 1	– (number	of	parameters	estimated	from	data)
0	for	
goodness-of-
fit	test



Example:	Are	babies	born	with	the	same	
frequency	every	day	of	the	week?
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Day	in	1999 #	births
Sunday 33
Monday 41
Tuesday 63
Wednesday 63
Thursday 47
Friday 56
Saturday 47

H0 :	The	probability	of	birth	was	the	same	every	day	of	the	week	in	1999.	

HA:	The	probability	of	birth	was	not	the	same	every	day	of	the	week	in	1999.	



Test	statistic
𝜒) = 	∑ #	ij?klmkn-.#	k,okpqkn- 0

#	k,okpqkn-
�
r

Day
# Observed	

births #	days	in	1999 Expected	prop # Expected	births
Sunday 33 52 52/365 =	0.142	 0.142*52	=	49.863
Monday 41 52 0.142	 49.863
Tuesday 63 52 0.142	 49.863
Wednesday 63 52 0.142	 49.863
Thursday 47 52 0.142 49.863
Friday 56 53 0.145 50.822
Saturday 47 52 0.142 49.863

Total 350 365 1 1



Calculating	the	test	statistic	and	df

Day # Observed	births # Expected	births
Sunday 33 0.142*52	=	49.863
Monday 41 49.863
Tuesday 63 49.863
Wednesday 63 49.863
Thursday 47 49.863
Friday 56 50.822
Saturday 47 49.863

Total 350 1

𝜒) = 	s
#	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑r − #	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑r )

#	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑r

�

r

= 	 (yy.z{.|Uy)
0

z{.|Uy
+	(z5.z{.|Uy)

0

z{.|Uy
+	(Uy.z{.|Uy)

0

z{.|Uy
+	(Uy.z{.|Uy)

0

z{.|Uy
+	(z}.z{.|Uy)

0

z{.|Uy
+	(<U.<:.|)))

0

<:.|))
+	(z}.z{.|Uy)

0

z{.|Uy

=	15.05

df =	#categories – 1	=	7	– 1	=	6

Our	categorical	variable	is	Days	of	week
It	has	seven	categories



Reports	and	conclusions

At	0.0199,	we reject the null	hypothesis that are births are equally distributed
across days in	1999.	We have	evidence that frequency of births differs across
days.
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> 1 - pchisq(15.05, 6) 
[1] 0.01987137



Notes	on	𝟀2	Goodness-of-fit	test
Assumptions	for	all	𝟀2 tests
◦ Randomly	sampled	data	from	population
◦ Two	or	more	categories	of	a	categorical	variable	(data	is	counts)
◦ Expected frequencies	must	be	>=1
◦ No	more	than	20%	of	expected	frequencies	are	<	5	

We	take	only	>=	test	statistic	for	P-value
◦ General	to	all	𝟀2	tests



𝟀2	goodness-of-fit	in	R
#### Prepare data: Observed counts and expected proportions ####
> births <- c(33,41,63,63,47,56,47)
> expected <- c(52,52,52,52,52,53,52)
> expected <- expected/sum(expected)
> expected
[1] 0.1424658 0.1424658 0.1424658 0.1424658 0.1424658 0.1452055 0.1424658

> chisq.test(births, p = expected)

Chi-squared test for given probabilities

data: births
X-squared = 15.057, df = 6, p-value = 0.01982



Binomial	is	preferred	for	two	groups
Temple	University	students	are	52%	female,	48%	male.	Does	this	class	
reflect	the	Temple	student	population?	

We	have	19	students:	7	females	and	12	males.



Binomial	P-values	are	more	precise
> binom.test(7, 19, 0.52)

Exact binomial test

data: 7 and 19
number of successes = 7, number of trials = 19, p-value = 0.251
alternative hypothesis: true probability of success is not equal to 0.52
95 percent confidence interval:
0.1628859 0.6164221

sample estimates:
probability of success

0.3684211

> chisq.test(c(7,12), p = c(0.52, 0.48))

Chi-squared test for given probabilities

data: c(7, 12)
X-squared = 1.749, df = 1, p-value = 0.186



Pause:	Goodness	of	fit	exercise



Contingency	table	analysis
Test	for	an	association	between	two	(or	more)	categorical	
variables
◦ Are	heart	attacks	more	likely	for	people	who	take	aspirin	daily?
◦ Are	smokers	more	likely	to	drink	than	non-smokers?

Two	flavors:
◦ 𝟀2	test	for	independence	(or	homogeneity)
◦ Fisher's	Exact	test



Contingency	tables	show	associated	
counts	for	two+	categorical	variables

Takes daily	aspirin No	daily	aspirin

Heart	attack 75 62

No	heart	attack 108 71



Example:	𝟀2	test	for	independence/association
Life	cycle	of	R.	ondatrae

Uninfected	frog Infected	frog

Eaten	by	bird 1 47

Not	eaten	by	bird 49 44

2	variables:
Eaten (2	categories	yes/no)
Infected (2	categories	yes/no)



Example:	𝟀2	test	for	independence

Uninfected frog Infected	frog TOTAL

Eaten	by	bird 1 47 48

Not	eaten 49 44 93

TOTAL 50 91 141

H0 :	Infection	and	being	eaten	are	independent

HA:	Infection	and	being	eaten	are	not	independent



Computing	the	test	statistic

𝜒) = 	∑ ∑ #	ij?klmkn~,�.#	k,okpqkn~,�
0

#	k,okpqkn~,�
�
l

�
p

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141

Under	the	null	hypothesis,	the	variables	are	independent.	
Expected	calculations	employ	P[A	and	B]	=	P[A]	x	P[B]

P[eaten	and	uninfected]	=	P[eaten]				x				P[uninfected]
=			48/141				x				50/141							=			0.1207

Expected	count	=	P[eaten	and	uninfected]	 x	total				=	17.02
… =	(row/total)	x	(column/total)	x	(total)	



Performing	the	test

𝜒) = 	s s
#	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑l,p − #	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑l,p

)

#	𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑l,p

�

l

�

p

= 	 (5.5}.:))
0

5}.:)
+	(zz.y:.{)

0

y:.{
+	(z{.yy.y)

0

yy.y
+	(z}.U:.))

0

U:.)
=	31.9

df =	(#r	– 1)(#c	– 1)	=	(2	– 1)(2	– 1)	=	1

Uninfected Infected

Eaten	 1	17.02 44	30.9

Not	eaten 49	33.3 47	60.2

1 – pchisq(31.9, 1)
[1] 1.623172e-08 

We	reject	the	null	hypothesis	(P	<<	α)	that	
infection	and	being	eaten	are	independent.	We	
have	evidence	that	being	infected	with	this	
trematode	is	associated	with	being	eaten	by	a	
bird.	



Performing	the	test	in	R
> data.table <- rbind(c(1,49), c(44,47)) 
> data.table

[,1] [,2]
[1,] 1 49
[2,] 44 47

> chisq.test(data.table)
Pearson's Chi-squared test with Yates' continuity correction
data: data.table
X-squared = 29.809, df = 1, p-value = 4.768e-08

> chisq.test(data.table, correct=FALSE)
Pearson's Chi-squared test
data: data.table
X-squared = 31.906, df = 1, p-value = 1.618e-08

This	is	what	we	calculated	on	the	last	
slide	("R	as	calculator").	Differences	
are	from	using	rounded	expected	
counts.



Yates	continuity	correction

𝜒) = 	∑ ∑ #	ij?klmkn~,�.#	k,okpqkn~,�
0

#	k,okpqkn~,�
�
l

�
p 	

𝜒) = 	∑ ∑ #	ij?klmkn~,�.#	k,okpqkn~,� 	.:.<
0

#	k,okpqkn~,�
�
l

�
p 	

Without	correction

Yates	continuity	correction

Decreases	the	test	statistic	and	increases	the	P-value



Odds
The	odds of	success	are	the	probability	of	success	divided	by	failure

	𝑂 = 	 o
5	.o

The	odds	of	being	eaten	while	infected

					𝑂 = 	 �[k�qk4	�4n	r4�kpqkn]
5	.�[k�qk4	�4n		r4�kpqkn]

= 	 z}/{5
5	.z}/{5

= 1.07

					𝑂 = 	 �[k�qk4	�4n	r4�kpqkn]
�[4iq	k�qk4	�4n		r4�kpqkn]

= 	 z}
zz
									= 1.07

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141



Odds	ratio,	for	2x2	tables
The	odds ratio	is	the	odds	of	success	in	one	group	divided	by	
odds	of	success	in	a	second	group

	𝑂𝑅 = o3 (5.o3)⁄
o0 (5.o0)⁄

Interpretation
◦ OR	=	1:	Odds	of	success	is	the	same	for	either	group
◦ OR	<	1:	Odds	of	success	in	group	2	are	higher	than	group	1
◦ OR	>	1:	Odds	of	success	in	group	1	are	higher	than	group	2

ORs	quantify	the	deviation	
from	null	in	2x2	
contingency	table	tests.



Odds	ratio	calculations:	Are	the	odds	higher	
that	you	are	eaten	while	infected?

	𝑂5 = 	
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

1	 − 𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

𝑃[𝑛𝑜𝑡	𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
47
44 = 1.07

	𝑂) = 	
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

1	 − 𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

𝑃[𝑛𝑜𝑡	𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
1
49 = 0.02

𝑶𝑹	 = 	
𝟏. 𝟎𝟕
𝟎. 𝟎𝟐 = 𝟓𝟐. 𝟑 Infected	frogs	have	52.3 the	odds	of	being	eaten	

compared	to	uninfected	frogs.

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141



Odds	ratio	calculations:	Are	the	odds	higher	
that	you	are	eaten	while	infected?

	𝑂5 = 	
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

1	 − 𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

𝑃[𝑛𝑜𝑡	𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
47
44 = 1.07

	𝑂) = 	
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

1	 − 𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

𝑃[𝑛𝑜𝑡	𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] =
1
49 = 0.02

Infected frogs	have	52.3 the	odds	of	being	eaten	
compared	to	uninfected frogs.

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141

𝑶𝑹	 = 	
𝟏. 𝟎𝟕
𝟎. 𝟎𝟐 = 𝟓𝟐. 𝟑



Odds	ratio	calculations:	Are	the	odds	higher	
that	you	are	eaten	while	infected?

	𝑂5 = 	
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

𝑃[𝑛𝑜𝑡	𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] = 1.07

	𝑂) = 	
𝑃[𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑]

𝑃[𝑛𝑜𝑡	𝑒𝑎𝑡𝑒𝑛	𝑎𝑛𝑑	𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑] = 0.02

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141

	𝑂5 = 	
𝑃[𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑎𝑛𝑑	𝑒𝑎𝑡𝑒𝑛]
𝑃[𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑎𝑛𝑑	𝑒𝑎𝑡𝑒𝑛] = 	

47
1 = 47

	𝑂) = 	
𝑃[𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑎𝑛𝑑	𝑢𝑛𝑒𝑎𝑡𝑒𝑛]
𝑃[𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑎𝑛𝑑	𝑢𝑛𝑒𝑎𝑡𝑒𝑛] = 	

44
49 = 0.899

𝑶𝑹	 = 	
𝟒𝟕	

𝟎. 𝟖𝟗𝟗 = 𝟓𝟐. 𝟑
Infected	frogs	have	52.3	
the	odds	of	being
eaten	compared	to	
uneaten frogs.

Eaten	frogs	have	52.3	the	odds	of	being	infected
compared	to	uneaten	frogs.



There	are	two	ways	to	calculate	OR
One	will	be	>	1	(52.3)	and	one	will	be	<	1	(1/52.3 =	0.019)
◦ We	generally	use	the	>1	option
◦ Convince	yourself	that	this	is	true.

Fun	fact:	𝑶𝑹	 = 	 𝒂∗𝒅
𝒃∗𝒄	

= 𝟏∗𝟒𝟒
𝟒𝟗∗𝟒𝟕	

= 𝟎. 𝟎𝟏𝟗

Often	we	report	log	odds =	ln(OR)	 > log(52.3) 
[1] 3.956996 

Uninfected Infected TOTAL

Eaten	 a 1	 c 47 48

Not	eaten b 49 d 44 93

TOTAL 50 91 141



Calculating	the	OR	standard	error

	𝑆𝐸 ln 𝑂𝑅 = 	 5
�
+ 5

j
+ 5

p
+ 5

n
�

	𝑆𝐸 ln 𝑂𝑅 = 	 5
5
+ 5

z{
+ 5

z}
+ 5

zz
� = 1.03

blah blah2

blob a c

blob1 b d

Uninfected Infected

Eaten	 1	 47

Not	eaten 49 44



Calculating	the	log	odds	CI

𝒍𝒏(𝑶𝑹� ) − 𝒁𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝑶𝑹� < 𝒍𝒏(𝑶𝑹) < 𝒍𝒏(𝑶𝑹)� + 𝒁𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝑶𝑹�

3.96	– (1.96*1.03)<	𝒍𝒏(𝑶𝑹)<	3.96	+	(1.96*1.03)		à 3.96	± 2.02



Conclusions,	with	log	odds
We	reject	the	null	hypothesis	(P	<<	α)	that	infection	and	
being	eaten	are	independent.	We	have	evidence	that	being	
infected	with	this	trematode	is	associated	with	being	eaten	
by	a	bird.	

Furthermore,	frogs	that	are	eaten	are	more	likely	to	be	
infected	compared	to	uneaten	frogs,	with	a	log	odds	ratio	of	
3.96	and	log	odds	CI of	1.94	– 5.98	.	



𝟀2	test	for	homogeneity
Independence:	measure	two	properties from	one	set	of	
subjects
◦ We	measured	eaten and	infection for	frogs

Homogeneity:	measure	one	property on	two	sets	of	
subjects	from	different	populations
◦ Measure	effect	of	medicine in	sample	of	cancer	individuals	and	sample	of	
healthy	individuals



Example:	test	of	homogeneity
Drug Placebo

Cancer 75 62

Healthy 108 71

H0 :	The	probability	that	symptoms	improve	is	the	same	for	both	cancer	and	
healthy	groups.
HA:	The	probability	that	symptoms	improve	differs	between	cancer	and	healthy	
groups.

In	practical	terms,	this	uses	the	exact	same	procedure	as	a	test	for	independence.



Fisher's	Exact	test
More	exact	than	𝟀2	and	used	for	low-count	tables
Compute	the	exact	probability	of	observing	table	with	counts:

Fisher's	test	computes	this	value	for	all	possible	tables with	the	same	
row/column	totals	(margins)
Computes	P-value	by	summing	probabilities	for	tables	with	as	extreme	or	more	
count	distributions

blah blah2

blob a c

blob1 b d

𝑃 𝑎, 𝑏, 𝑐, 𝑑 =
𝑎 + 𝑏 ! 𝑐 + 𝑑 ! 𝑎 + 𝑐 ! 𝑏 + 𝑑 !

𝑛! 𝑎! 𝑏! 𝑐! 𝑑! 	



Fisher's	exact	test

Uninfected Infected TOTAL

Eaten	 1	 47 48

Not	eaten 49 44 93

TOTAL 50 91 141

> chisq.test(data.table, correct=FALSE)
Pearson's Chi-squared test

data: data.table
X-squared = 31.906, df = 1, p-value = 1.618e-08

> fisher.test(data.table)
Fisher's Exact Test for Count Data

data: data.table
p-value = 8.37e-10
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.0005344122 0.1417331275

sample estimates:
odds ratio
0.02222648

Exact	P-value

Our	OR	=	52.3,	or	0.019.	Slight	differences	are	expected	because	fisher.test()	uses	ML	

Approximate	P-value



Relative	risk:	It's	not	the	OR
Commonly	measured	in	epidemiological	studies

Relative	risk	is	the	probability	of	an	event	(ie disease)	in	an	
exposed	group,	relative	to	unexposed	group
◦ RR	=	P(event	when	exposed)	/	P(event	when	not	exposed)



Relative	risk	example
Lung	
cancer

No	lung	
cancer

Smoker 525 450

Non-
smoker

32 621

RR	=	P(event	when	exposed)	/	P(event	when	not	exposed)

RR	of	cancer	due	to	smoking	exposure:
=	P(cancer	|	smoker	)/P(cancer	|	not	smoker)
=	[	525/(525	+	450)	]	/	[32/(32+621)	]

=	10.99

à Smokers	have	a	10.99	times	higher	risk	than	do	non-smokers	to	develop	lung	cancer.

Live	exercise:	Calculate	the	odds	ratio	for	a	smoker	developing	cancer	relative	to	a	non-smoker.	



The	Odds	Ratio
Lung	
cancer

No	lung	
cancer

Smoker 525 450

Non-
smoker

32 621

	𝑂5 = 	
𝑃[𝑠𝑚𝑜𝑘𝑒𝑟	𝑎𝑛𝑑	𝑐𝑎𝑛𝑐𝑒𝑟]

𝑃[𝑛𝑜𝑛 − 𝑠𝑚𝑜𝑘𝑒𝑟	𝑎𝑛𝑑	𝑐𝑎𝑛𝑐𝑒𝑟] =
525
32

	𝑂) = 	
𝑃[𝑠𝑚𝑜𝑘𝑒𝑟	𝑎𝑛𝑑	𝑛𝑜	𝑐𝑎𝑛𝑐𝑒𝑟]
𝑃[𝑛𝑜𝑛 − 𝑠𝑚𝑜𝑘𝑒𝑟	𝑛𝑜	𝑐𝑎𝑛𝑐𝑒𝑟] =

450
621

𝑂𝑅	 = 	
525/32
450/621 = 𝟐𝟐. 𝟔𝟒

à Smokers	have	22.64	times	the	odds	of	getting	lung	cancer	than	non-smokers.



What's	the	practical	difference?
Odds	ratios	measure	the	extent	of	association	between	
variables.
◦ It	is	the	ratio	of	two	odds	(ratio	of	prob event	:	prob non-event)

Relative	risk	is	the	more	intuitive	quantity	that	we	
"understand"
◦ It	is	the	ratio	of	two	probabilities	(prob event)



Recap	on	estimation
Normally-distributed variable
◦ 𝜇	" = 	 𝑥̅
◦ 𝜎() = 𝑠)

◦ Known	σ

◦ 𝑆𝐸,̅ =
6
4�

◦ 95%	CI	=	𝑥̅ ± 𝑍:.:)<𝑆𝐸
◦ Unknown	σ

◦ 𝑆𝐸,̅ =
?
4�

◦ 95%	CI	=	𝑥̅ ± 𝑡:.:)<𝑆𝐸

Binomially-distributed	variable

◦ 𝑝̂ = H
4

◦ 𝑆𝐸o( = 	 𝑝̂(1 − 𝑝̂)/𝑛�

◦ 95%	CI	=𝑝̂ ± 𝑍:.:)<𝑆𝐸o(

Log-Odds	ratio

◦ 𝑙𝑜𝑔	𝑂𝑅� = ln o(3 5.o(3⁄
o(0 5.o(0⁄

◦ 𝑆𝐸¤i¥	¦§� = 5
�
+ 5

j
+ 5

p
+ 5

n
� 	

◦ 95%	CI	=	𝑙𝑜𝑔	𝑂𝑅� ± 𝑍:.:)<𝑆𝐸o(
	



Choose	your	own	adventure,	so	far

 

(Or	fisher's	exact	test)


