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Recall	from	last	week
For	𝑋~𝑁(0,1),	what	is	the	probability	P(X	≤	0.47)?	
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[1]  0.6808225



Computing	probabilities	for	a	
population
Clownfish	lengths	are	normally	distributed	as	N(11,	1.9).

What	is	the	probability	that	a	clownfish	is	less	than	13	cm?

𝑍 = 	 ,-.
/
= 01-00

0.03� = 1.83																		> pnorm(1.83)         
[1] 0.966375 



Clownfish	lengths	are	normally	distributed	as	N(11,	1.9).

What	is	the	probability	that	a	sample	of	100	clownfish	has	a	
mean	less	than	11.5?	

𝑍 = 	
𝑥 − 𝜇
𝑆𝐸

Computing	probabilities	for	a	
sample

𝑍 = 	
𝑥 − 𝜇
𝜎

𝑆𝐸 = 	 /
;�
= 0.3

0<<� = 0.19

=	 00.=-00
<.03

= 2.63 > pnorm(2.63)                              
[1] 0.9957308 



A	return	to	sampling	distributions
The	sampling	distribution is	the	distribution	of	all	possible	values	
an	estimate	for	a	parameter	can	take	based	on	random	sampling
◦ Sampling	distribution	of	the	means	=	all	the	means	one	could	measure	across	samples

For	clownfish,	sampling	distribution	of	the	mean,	for	N=100,	has	a	
standard	deviation	of	1.1
◦ SE	=	standard	deviation	of	the	sampling	distribution	of	the	mean	=	1.1

And	if	we	didn’t	know	the	population	𝜎 to	compute	SE?
◦ We	could	approximate	as	SE	=	 >

;�
,	where	s is	standard	deviation	of	a	sample



Hypothesis	testing
Compare	data	(random	sample)	to	the	expectation	of	a	
specific null	hypothesis

Hypothesis	testing	uses	probability	to	answer	whether	an	
observed	effect	occurred	by	chance



Example	scenario	to	use	hypothesis	
testing
The	polio	vaccine	was	first	tested	in	1954.
~400,000	students	were	divided	into	two	random	groups:
◦ Half	received	the	vaccine,	half	received	placebo
◦ In	vaccine	group,	0.016%	developed	polio.
◦ In	placebo	group,	0.057%	developed	polio.

We	can	use	hypothesis	testing	to	ask	if	the	vaccine	likely	
worked,	or	whether	random	chance	likely	caused	results.



Hypothesis	testing	has	null	and	
alternative	hypotheses
The	null	hypothesis	H0 makes	a	claim	about	the	underlying	
population	parameter
◦ "Nothing	interesting	is	going	on"
◦ Specific	tests	have	specific	null	hypotheses

The	alternative	hypothesis	HA is	what	we	would	like	to	
"know	if	it's	true"
◦ "Something	we	care	about	is	going	on"



Parametric	vs.	nonparametric	hypothesis	
tests
Parametric	tests	assume	that	the	data	follow	a	particular	
known	distribution
◦ Distributions	such	as	normal,	binomial,	chi-squared,	etc.

Nonparametric tests	make	no	assumption	about	the	data	
and	are	"distribution-free"



The	null	distribution	represents	H0
The	null	distribution is	the	sampling	distribution	of	outcomes	for	
a	test	statistic	assuming	the	null	is	true

Hypothesis	testing	is	sometimes	referred	to	as	null	hypothesis	
significance	testing

Hypothesis	tests	ask:
To	what	extent	are	my	data	expected	under	the	null	hypothesis?
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Critical	values	where	N(0,1)	is	the	null



The	P-value	is	the	area	under	the	curve
for	your	test	statistic
Result	of	hypothesis	test	is	significant if	test	statistic	falls	in	
the	critical	region
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Forming	conclusions
Based	on	your	pre-chosen	α:

1. P-value	<=	α
◦ Significant	results	allow	us	to	reject	the	null	hypothesis	and	conclude	

evidence	in	favor	of	the	alternative	hypothesis

2. P-value	> α
◦ We	do	not	have	significant	results.	We	fail	to	reject	the	null	hypothesis,	

and	we	have	no	evidence	in	favor	of	the	alternative	hypothesis.

The	choice	of	α	is	totally	arbitrary,	but	usually	you	will	see	0.05	or	0.01



Error	rates
α sets	the	overall	false	positive	rate for	our	test	procedure
◦ If	the	null	is	true,	we	falsely	reject	the	null	5%	of	the	time	for	α=0.05

Truth	about	population	(generally	unknown)

Conclusion	

Null	is	true Alternative	is	true

Reject	null			(P<= α	) Type	I	error	(False	
positive)

True	positive

Fail	to	reject	null			(P> α	) True negative Type	II	Error	(False	
negative)



What	type	of	error	is	it	(or	is	it?)
A	new	arthritis	drug	does	not	have	an	effect	in	clinical	trials,	
even	though	it	actually	does	reduce	arthritis	pain.
A	person	with	HIV	receives	a	positive	test	result	for	HIV.
A	person	using	illegal	performing	enhancing	drugs	passes	a	test	
clearing	them	of	drug	use.
A	study	found	a	significant	relationship	between	neck	strain	and	
jogging,	when	reality	there	is	no	relationship.
An	healthy	individual	gets	a	positive	cancer	biopsy	result.

FN	(type	II)

No	error

FN	(type	II)

FP	(type	I)

FP	(type	I)



One-sided	vs.	Two-sided	(or	–tailed)
One-sided	tests	are	directional
◦ Are	my	data	larger/smaller	than	null?	

Two-sided	tests	are	non-
directional
◦ Do	my	data	differ	from	null?

Total area	=	𝛂

Does	data	differ	
from	null?

Is	data	<	null?

Is	data	>	null?



One-sided	vs.	Two-sided	tests
One-sided	tests	have	more	power	than	two-sided	tests
◦ Power	=	the	ability	to	detect	a	true	effect
◦ Also	known	as	true	positive	rate

One-sided	tests	are	more	limited	in	scope	and	can	get	you	in	
trouble	if	you	choose	the	wrong	direction

You	must	choose	only	one	test	before	you	look	at	your	data



Approach	to	hypothesis	testing
1. Decide	what	question	you	are	interested	in	answering
2. Determine	the	appropriate	hypothesis	test	to	use
3. Check	that	your	data	meet	the	assumptions*	of	the	test
4. Compute	the	test	statistic	for	your	hypothesis	test	and	

the	corresponding	P-value
5. Draw	conclusions	using	an	a	priori	specified	𝛂 (P-value	

threshold)
*Parametric	only



Hypothesis	tests	to	compare	means
Test	the	null	hypothesis:
◦ One	sample	test:	The	mean	of	my	sample	equals	a	null	value
◦ Two	sample	test:	The	mean	of	my	two	samples	are	equal	(difference	in	means	
is	0)

Two	options:
◦ Z-test,	where	the	null	distribution	is	the	standard	normal	N(0,1)
◦ Test	statistic	is	Z

◦ t-test,	where	the	null	distribution	is	the	Student's	t	distribution
◦ Test	statistic	is	t



Z-tests	vs	t-tests
Normal	populations	have	the	sampling	distribution	𝑋~𝑁(𝜇, /

@

;�
)

◦ Its	test	statistic	is	𝑍 = 	 ,-.
AB
	 where	SE	=	𝜎	/ 𝑛�

◦ Used	for	z-tests

Because	𝜎 is	rarely	known,	we	can	approximate	SE = >
;�

𝑡 = 	 ,̅-.
ABHI

	,			where	𝑆𝐸,̅ = 	
>
;�



Standard	normal	and	Student's	t
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Standard	normal	N(0,1)
Adding	t distributions	with	increasing	degrees	of	freedom

df =	2 df =	5 df =	15



Student's	twhere	df =	100
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Properties	of	the	t distribution
As	df approaches	∞,	the	t distribution	approaches	N(0,1)
◦ Usually,	df =	n	– 1,	where	n	is	sample	size

Like	the	normal	distribution…
◦ t distribution	is	symmetric
◦ Mean	=	median	=	mode

Unlike	the	normal	distribution…
◦ t has	*much	fatter	tails*
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Test	Assumptions
Sample	is	a	random	sample	from	its	population

Sample	data	is	normally	distributed



Dive	right	in:	One	sample	t-test
Null	hypothesis
H0 :	𝒙I = 	𝝁

One-sided	test
HA :	𝒙I > 𝝁
HA :	𝒙I < 𝝁

Directional

Two-sided	test
HA :	𝒙I ≠ 𝝁

Non-directional



Performing	a	one-sample	t-test
I	want	to	know	if	the	disease,	Bad	Disease,	influences	human	body	temperature.	
We	know	that	standard	human	body	temperature	is	98.6	degrees	F.	I	measured	
the	temperatures	for	a	random	sample	of	15	individuals	with	Bad	Disease.	On	
average,	they	have	a	temp	of	99.59 degrees	F.	

Does	Bad	Disease	raise	body	temperature?

H0 :	Bad	Disease	does	not	raise	body	temperature.			𝒙I = 𝟗𝟖. 𝟔
HA :	Bad	Disease	raises	body	temperature.																		𝒙I > 𝟗𝟖. 𝟔

> head(bad.disease.temp)
temp

1 98.17420
2 97.62137
3 99.60920
4 100.44158
5 99.75483
6 100.28846

> mean(bad.disease.temp$temp)
[1] 99.594 



Checking	assumptions	of	the	test
The	t-test	assumes	that	our	sample	data	is	normally	distributed

Hard	to	tell	if	normal	from	
histogram!
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Assessing	normality	with	a	Q-Q	plot
Quantile-Quantile	plots	graphically	show	if	two	datasets	
come	from	the	same	distribution
◦ If	the	points	follow	the	"expectation"	line,	datasets	are	similarly	distributed

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

−2 −1 0 1 2

0
1

2
3

4
5

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

5.
6

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0
20

40
60

80

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Ideal	scenario.	Data	is	normal Data	is	not	normal Close	enough,	let's	say	normal



Granular	data	is	also	normal!
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Making	a	Normal	Q-Q	plot
> head(bad.disease.temp)

temp
1 98.17420
2 97.62137
3 99.60920
4 100.44158
5 99.75483
6 100.28846

## Uses base R, not ggplot ##
> qqnorm(bad.disease.temp$temp, pch=20)
> qqline(bad.disease.temp$temp, col="red")

Data	approximately	follow	the	QQ	line.	Therefore,	assumptions	have	been	met	and	we	can	run	the	test.
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Performing	the	t-test
1. Calculate	the	test	statistic

2. See	where	test	statistic	falls	on	its	distribution

3. Compute	P-value	as	area	under	the	curve past	this	
statistic

o The	P-value	is	the	probability	of	obtaining	a	test	statistic	as	large	or	larger	
than	that	recovered



Compute	the	test	statistic,	t
H0 :	Bad	Disease	does	not	raise	body	temperature.						𝒙I = 𝟗𝟖. 𝟔
HA :	Bad	Disease	raises	body	temperature.																					𝒙I > 𝟗𝟖. 𝟔

𝑡 = 	 ,̅-.R
S�
= 	 33.=3	-3T.UV.WW

VX�
	= 2.66

> mean(bad.disease.temp$temp)
[1] 99.594

> sd(bad.disease.temp$temp) 
[1] 1.438273

> nrow(bad.disease.temp)
[1] 15

 this	is	our	test	statistic,	t2.66

More	precisely,	t2.66,		df=14



Find	where	the	statistic	falls	in	
distribution
Our	null	distribution	is	a	t distribution	with	df =	14	(15-1)
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This	area	is	our	P-value	because	we	test	if 𝒙I > 𝟗𝟖. 𝟔

## P(X >= 2.66) ##
> 1 – pt(2.66, 14)

0.009
 



Forming	conclusions

Our	P=0.009,	which	is	less	than	α=0.05.	Therefore	we	
reject	the	null	hypothesis	and	we	have	evidence	that	Bad	
Disease	raises	body	temperature.

H0 :	Bad	Disease	does	not	raise	body	temperature.						𝒙I = 𝟗𝟖. 𝟔
HA :	Bad	Disease	raises	body	temperature.																					𝒙I > 𝟗𝟖. 𝟔



Approach	to	hypothesis	testing
1. Decide	what	question	you	are	interested	in	answering

Is	the	mean	of	my	data	equal	to	98.6?

2. Determine	the	appropriate	hypothesis	test	to	use
Use	a	one-sample	t-test

3. Check	that	your	data	meet	the	assumptions	of	the	test
We	confirmed	the	data	is	normally	distributed

4. Compute	the	test	statistic	for	your	hypothesis	test	and	the	corresponding	
P-value

We	found	t	=	2.66	and	P=0.009

5. Draw	conclusions	using	a	specified	P-value	threshold
At	𝛂 =	0.05,	we	reject	the	null	hypothesis	and	find	evidence	that	Bad	Disease	raises	body	

temp.



Effect	size
The	effect	we	observed	here	is	99.59	– 98.6	=	0.99

Statistical	significance	is	not	the	same	as	biological	
significance
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Comparison	between	red	and	blue	samples	
will	show	a	significant	difference	between	
means.
But	does	it	matter?



Confidence	intervals
Range	of	values	surrounding	the	sample	estimate	that	is	
likely	to	contain	the	population	parameter

Generally	we	calculate	the	95%	confidence	interval	(goes	
with	𝛂 =	0.05)

In	95%	of	random	samples,	this	will	be	true:

𝒙I − 𝒕𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒙I < 𝝁 < 𝒙I + (𝒕𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒙I)	



95%	Confidence	Interval



Conceptualizing	the	CI

True population mean

10 random samples, in no particular order

sample effect

95% CI

9/10	(~95%)	of	these	random	samples	has	a	95%	confidence	interval	that	overlaps	the	true	mean	



Does	this	figure	represent	95%	CIs?

True population mean

10 random samples, in no particular order

NO.	If	anything,	these	are	40%	CIs



Calculating	the	CI
Construct	upper	and	lower	limits	of	95%	CI
◦ Lower:	𝑥̅ − (𝑡<.<c= ∗ 𝑆𝐸,̅)	
◦ Upper:	𝑥̅ + (𝑡<.<c= ∗ 𝑆𝐸,̅	)

### Calculate t_0.025
> qt(0.025, 14)
[1] -2.144787

### Calculate t_0.025*SE
> t <- abs(qt(0.025, 14)) 
> se <- sd(bad.disease.temp$temp)/sqrt(15)
> t * se

[1] 0.3713605

95%	CI	=	𝒙I ± 𝒕𝟎.𝟎𝟐𝟓 ∗ 𝑺𝑬𝒙I	

= 𝟗𝟗. 𝟓𝟗 ± 0.371

The	true	population	mean	is	95%	likely	
to	be	in	the	range	99.22	– 99.96



Bring	it	all	together
We	have	a	sample	mean	of	99.59	with	a	standard	error	of	0.19.

Our	test	statistic	tdf=14 =	2.66,	giving	a	P-value	=	0.009.	We	reject	the	null	
hypothesis	at	𝛂 =	0.05 and	have	evidence	that	Bad	Disease	raises	
temperature.	

Our	effect	size	is	0.99.	

We	found	a	95%	CI	of	99.59	±	0.371,	giving	the	likely	range	for	the	true	
population	parameter.	Note	that	the	null	of	98.6		is	not	in	the	CI.



Reporting	non-significant	results
Let's	say	we	found	tdf=14 =	1.05	à P=	0.15

At	𝛂 =	0.05,	we	fail	to	reject	the	null	hypothesis.	We	have	
no	evidence	that	Bad	Disease	raises	body	temperature.	
◦ Does	notmean	that	Bad	Disease	doesn't	raise	the	temperature	– our	sample	
just	had	no	evidence	for	this	effect.

### Calculate P-value
> 1 - pt(1.05, 14)
[1] 0.1557531



What	is a	P-value?
The	P-value	is	an	area	under	the	curve	of	the	null	
distribution
◦ It	is	therefore	the	probability	of	observing	this	effect	or	larger	assuming	the	
null	hypothesis	is	true

◦ P-value	=	P(effect	or	more	observed	|	H0 is	true)
◦ P-value	=	0.009:	If	H0 is	true,	I	would	obtain	this	effect	or	larger	(t>=2.66)	in	
0.9%	of	such	studies	due	to	random	sampling	error



What	is a	P-value?
A	low	P-value	means	that	the	data	are	unlikely	under	the	
null
◦ We	therefore	make	an	educated	guess	that	there	is	probably	something	else	
going	on,	such	as	the	alternative	hypothesis

◦ We	can	never rule	out	the	possibility	that	results	were	fully	consistent	with	
null,	just	unlikely



P-values	are	not	magic
P-values	cannot evaluate	whether	H0 or	HA is	true
◦ Large	P-values	do	not prove	the	null	is	true
◦ Small	P-values	do	not prove	the	alternative	is	true.	They	merely	suggest	the	null	likely	
isn't.

P-values	do	not give	the	probability	that	you	made	the	right	
conclusion

Two	studies	with	the	same	P-value	do	not	provide	the	same	
weight	of	evidence



Distribution	of	P-values
I	perform	1000	t-tests	on	random	samples	from	N(3.5,	1)	
and	compare	to	null	mean	=	3.5.	Therefore,	null	is	true.
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Distribution	of	P-values
I	perform	1000	t-tests	on	random	samples	from	N(3.5,	1)	
and	compare	to	null	mean	=	2.	Therefore,	null	is	false.
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Only	~67%	of	distribution!	



P-values	and	effect	size

cally important. This is often untrue. First, the difference may
be too small to be clinically important. The P value carries no
information about the magnitude of an effect, which is cap-
tured by the effect estimate and confidence interval. Second,
the end point may itself not be clinically important, as can
occur with some surrogate outcomes: response rates versus
survival, CD4 counts versus clinical disease, change in a mea-
surement scale versus improved functioning, and so on.25-27

Misconception #4: Studies with P values on opposite sides of
.05 are conflicting. Studies can have differing degrees of sig-
nificance even when the estimates of treatment benefit are
identical, by changing only the precision of the estimate, typ-
ically through the sample size (Figure 2A). Studies statisti-
cally conflict only when the difference between their results is
unlikely to have occurred by chance, corresponding to when
their confidence intervals show little or no overlap, formally
assessed with a test of heterogeneity.

Misconception #5: Studies with the same P value provide the
same evidence against the null hypothesis. Dramatically different
observed effects can have the same P value. Figure 2B shows
the results of two trials, one with a treatment effect of 3%
(confidence interval [CI], 0% to 6%), and the other with an
effect of 19% (CI, 0% to 38%). These both have a P value of
.05, but the fact that these mean different things is easily
demonstrated. If we felt that a 10% benefit was necessary to
offset the adverse effects of this therapy, we might well adopt
a therapy on the basis of the study showing the large effect
and strongly reject that therapy based on the study showing
the small effect, which rules out a 10% benefit. It is of course
also possible to have the same P value even if the lower CI is
not close to zero.

This seeming incongruity occurs because the P value de-
fines “evidence” relative to only one hypothesis—the null.
There is no notion of positive evidence—if data with a P !
.05 are evidence against the null, what are they evidence for?
In this example, the strongest evidence for a benefit is for 3%
in one study and 19% in the other. If we quantified evidence
in a relative way, and asked which experiment provided

greater evidence for a 10% or higher effect (versus the null),
we would find that the evidence was far greater in the trial
showing a 19% benefit.13,18,28

Misconception #6: P ! .05 means that we have observed
data that would occur only 5% of the time under the null hypoth-
esis. That this is not the case is seen immediately from the P
value’s definition, the probability of the observed data, plus
more extreme data, under the null hypothesis. The result with
the P value of exactly .05 (or any other value) is the most
probable of all the other possible results included in the “tail
area” that defines the P value. The probability of any individ-
ual result is actually quite small, and Fisher said he threw in
the rest of the tail area “as an approximation.” As we will see
later in this chapter, the inclusion of these rarer outcomes
poses serious logical and quantitative problems for the P
value, and using comparative rather than single probabilities
to measure evidence eliminates the need to include outcomes
other than what was observed.

This is the error made in the published survey of medical
residents cited in the Introduction,3 where the following four
answers were offered as possible interpretations of P ".05:

a. The chances are greater than 1 in 20 that a difference
would be found again if the study were repeated.

b. The probability is less than 1 in 20 that a difference this
large could occur by chance alone.

c. The probability is greater than 1 in 20 that a difference
this large could occur by chance alone.

d. The chance is 95% that the study is correct.

The correct answer was identified as “c”, whereas the ac-
tual correct answer should have read, “The probability is
greater than 1 in 20 that a difference this large or larger could
occur by chance alone.”

These “more extreme” values included in the P-value def-
inition actually introduce an operational difficulty in calcu-
lating P values, as more extreme data are by definition unob-
served data. What “could” have been observed depends on
what experiment we imagine repeating. This means that two
experiments with identical data on identical patients could
generate different P values if the imagined “long run” were
different. This can occur when one study uses a stopping
rule, and the other does not, or if one employs multiple
comparisons and the other does not.29,30

Misconception #7: P ! .05 and P !.05 mean the same
thing. This misconception shows how diabolically difficult it
is to either explain or understand P values. There is a big
difference between these results in terms of weight of evi-
dence, but because the same number (5%) is associated with
each, that difference is literally impossible to communicate. It
can be calculated and seen clearly only using a Bayesian evi-
dence metric.16

Misconception #8: P values are properly written as inequal-
ities (eg, “P !.02” when P ! .015). Expressing all P values as
inequalities is a confusion that comes from the combination
of hypothesis tests and P values. In a hypothesis test, a pre-set
“rejection” threshold is established. It is typically set at P !
.05, corresponding to a type I error rate (or “alpha”) of 5%. In
such a test, the only relevant information is whether the
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rived from profoundly different results (B, Misconception #5).
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P-values	are	strongly	influenced	by	
sample	size

𝑡 = 	 ,̅-.R
S�
= 	 33.=3	-3T.UV.WW

𝟏𝟓�
	= 2.66à P=0.009

𝑡 = 	 ,̅-.R
S�
= 	 33.=3	-3T.UV.WW

𝟏𝟎𝟎�
	= 6.88à P=	2.81e-10	

Increasing	sampling	size	increases	power

Power	is	the	probability	you	detect	a	true	effect,	
i.e.	true	positive	rate



P-values	are	kind	of	an	accident
Personally,	the	writer	prefers	to	set	a	low	standard	of	
significance	at	the	5	percent	point	.	.	.	.	A	scientific	fact	
should	be	regarded	as	experimentally	established	only	if	a	
properly	designed	experiment	rarely	fails	to	give	this	level	
of	significance.

- R.A.	Fisher	



To	recap
We	have	performed	a	one-sided	t-test	to	test	the	
alternative	hypothesis	that	𝒙I > 𝟗𝟖. 𝟔

We	can	also	perform	a	two-sided	t-test	to	test	the	non-
directional alternative	hypothesis	that	 𝒙I ≠ 𝟗𝟖. 𝟔



Compute	the	test	statistic,	t
H0 :	Bad	Disease	does	not	affect	body	temperature.						𝒙I = 𝟗𝟖. 𝟔
HA :	Bad	Disease	affects body	temperature.																					𝒙I ≠ 𝟗𝟖. 𝟔

𝒙I =	99.59	
𝜇 =	98.6
n	=	15

𝑡 = 	 ,̅-.R
S�
= 	 33.=3	-3T.UV.WW

VX�
	= 2.66

> head(bad.disease.temp)
temp

1 98.17420
2 97.62137
3 99.60920
4 100.44158
5 99.75483
6 100.28846

> mean(bad.disease.temp$temp)
[1] 99.594

> sd(bad.disease.temp$temp) 
[1] 1.438273

 

this	is	our	test	statistic,	t2.66

More	precisely,	t2.66,df=14



Computing	the	P-value
For	a	two-sided	test,	we	consider	both	extremes

## P(X >= 2.66) or P(X<=-2.66)
> 2 * (1 - pt(2.66, 14))

0.01806
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This	combined	area	is	our	P-value	=	0.018

-2.66



When	running	a	one-sided	t-test	goes	
wrong	
For	sample	of	n=20,	I	want	to	test	𝑥̅ < 𝜇 where	𝜇 =	5.8
> head(example.sample)

values
1 5.511307
2 5.012612
3 6.178421
4 7.587568
5 6.892165
6 5.197049

> mean(example.sample$values)
[1] 6.325366

> sd(example.sample$values)
[1] 0.8295474 

 

𝑡 = 	
𝑥̅ − 𝜇
𝑠
𝑛�

= 	
6.32 − 5.8
0.83
20�

= 2.801



The	area	below the	statistic	is	our	P-
value	for	𝑥̅ < 𝜇
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> pt(2.801, 19)
[1] 0.9943006
 



Two-sample	t-tests
Compare	means	of	two	samples	(	𝑥̅0and	𝑥̅c )	to	each	other.
Are	the	underlying	population	means	𝜇0and	𝜇c the	same?

Null	hypothesis
H0 :	𝝁𝟏 =	𝝁𝟐

H0 :	𝝁𝟏 - 𝝁𝟐 = 𝟎

One-sided	test
HA :	𝝁𝟏 	> 𝝁𝟐
HA :𝝁𝟏 < 𝝁𝟐

HA :	𝝁𝟏 	−	𝝁𝟐 > 	𝟎
HA :	𝝁𝟏 	−	𝝁𝟐 < 	𝟎

Two-sided	test
HA :	𝝁𝟏 ≠ 𝝁𝟐

HA :	𝝁𝟏 − 𝝁𝟐 ≠ 𝟎



Formulas	for	two-sample	t-test

𝒕 = 	
𝒙I𝟏 − 𝒙I𝟐
𝑺𝑬𝒙I𝟏-𝒙I𝟐

	𝑆𝐸,̅V-,̅@ = 𝑠jc 	
1
𝑛0
	+	

1
𝑛c

	
�

𝑠jc =
𝑑𝑓0𝑠0c + 𝑑𝑓c𝑠cc

𝑑𝑓0 + 𝑑𝑓c

𝑑𝑓 = 𝑑𝑓0 + 𝑑𝑓c = 𝑛0 + 𝑛c 	− 2

Standard	error	for	two	samples

Pooled	sample	variance

Degrees	of	freedom	for	t distribution



Two-sample	t-test	assumptions
Both	samples	must	be	distributed	normally

Samples	should	have	equal	variances
◦ F-test can	compare	variances	of	samples	to	check	assumption,	but	it	is	highly	
sensitive	and	will	"too	often"	reject	the	null.

◦ Levene's test will	test	for	homogeneity	of	variances	as	well
◦ Can	use	Welch's	t-test when	variance	assumption	is	not	met

For	this	class,	we	focus	on	normal	assumption



Two-sample	vs.	paired	t-test
Paired	t-test	is	a	special	case	where	the	two	samples	being	
compared	have	a	natural	pairing
◦ Effectively	a	one-sample	t-test where	we	test	the	if	difference between	two	
samples	=	0

Paired	t-test	must	check	assumption	that	difference	
between	means	is	normal
You	can	always	perform	a	two-sample	instead	of	paired,	but	
paired	will	have	more	power



Paired	scenarios
Making	two	measurements	on	each	subject

Making	repeat	measurements	on	the	same	subject	at	two	
time	points
◦ Before	and	after	treatment

Matching	subjects	with	similar	age,	sex,	etc.

Placing	subject	and	control	in	close	proximity



Is	it	paired	or	independent?
Triglyceride	levels	of	a	group	of	subjects	is	compared	before	and	after	taking	a	vitamin	
supplement.
For	a	clinical	trial,	one	group	is	given	a	vitamin	and	the	other	a	placebo.	Their	
triglyceride	levels	are	compared.
For	a	clinical	trial,	two	groups	with	individuals	matched	for	age,	sex,	and	health	history	
are	given	vitamin	and	placebo,	respectively.	Triglyceride	levels	are	compared.
I	measure	free	energies,	between	inactive	and	active	conformations,	for	30	enzymes.	
A	clinical	trial	tests	a	new	drug	on	20	sets	of	twins,	giving,	for	each	twin	pair,	one	a	
placebo	and	one	the	drug.	Comparisons	between	placebo	and	drug	groups	are	made.
A	clinical	trial	tests	a	new	drug	on	20	sets	of	twins,	randomizing	all	individuals	into	a	
placebo	group	and	or	a	drug	group.	Comparisons	between	groups	are	made.

Paired

Independent

Paired
Paired

Paired

Independent



Is	it	paired	or	independent?
Paired:	Can	I	draw	a	line	between	individuals	in	groups?
◦ Must	be	same	N	per	group,	by	definition

Independent:	No	natural	way	to	draw	the	lines.

5

10

15

before after
Paired groups

M
ea

su
re

d 
va

lu
e



Troubleshooting:	Failure	to	meet	normal	
assumption
1.	If	sample	size	is	large	enough	(>~30),	Central	Limit	
Theorem	kicks	in	and	assumptions	are	effectively	met

2.	If	sample	is	size	is	small	(<~30)	we	can	either:
◦ Transform the	data	to	be	normal
◦ Use	a	nonparametric	test



Non-normal	data
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Data	transformations
Log	of	data:	x	à log(x)

Square	root	of	data:	x	à sqrt(x)

Inverse	of	data:	xà 1/x



Data	transforms:	Caution
Your	test	will	now	run	on	transformed	data
◦ Assume	log	transform	performed	and	result	has	effect	size	1.5
◦ Actual	effect	size	is	exp(1.5)	=	4.48

Be	careful	of	0's	in	data
◦ 1/0	and	log(0)	are	undefined
◦ Hack:	Replace	all	0's	with	tiny	number	like	1e-8

Instructor	Editorializing:

Much	like	Z-tables,	data	
transforms	are	mostly	historical


