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Statistical inference




Recall from last week
For X~N(0,1), what is the probability P(X < 0.47)?

# CDF: P(X <= 0.47)
> pnorm(0.47)
[1] ©0.6808225




Computing probabilities for a

©s
population w

Clownfish lengths are normally distributed as N(11, 1.9).

What is the probability that a clownfish is less than 13 cm?

= 1.83 > pnorm(1.83)
[1] 0.966375




Computing probabilities for a
sample

Clownfish lengths are normally distributed as N(11, 1.9).

What is the probability that a sample of 100 clownfish has a
mean less than 11.57

7 = X H — 115711 5 3 > pnorm(2.63)

SE 0.19 ' [1] 0.9957308
o 1.9
SE = T V100 0.19




A return to sampling distributions

The sampling distribution is the distribution of all possible values

an estimate for a parameter can take based on random sampling
o Sampling distribution of the means = all the means one could measure across samples

For clownfish, sampling distribution of the mean, for N=100, has a

standard deviation of 1.1
o SE = standard deviation of the sampling distribution of the mean =1.1

And if we didn’t know the population o to compute SE?

> We could approximate as SE = \/iﬁ , Where s is standard deviation of a sample



Hypothesis testing

Compare data (random sample) to the expectation of a
specific null hypothesis

Hypothesis testing uses probability to answer whether an
observed effect occurred by chance



Example scenario to use hypothesis
testing

The polio vaccine was first tested in 1954,

~400,000 students were divided into two random groups:
> Half received the vaccine, half received placebo
° |n vaccine group, 0.016% developed polio.
° |n placebo group, 0.057% developed polio.

We can use hypothesis testing to ask if the vaccine likely
worked, or whether random chance likely caused results.



Hypothesis testing has null and
alternative hypotheses

The null hypothesis H, makes a claim about the underlying

population parameter
o "Nothing interesting is going on"
o Specific tests have specific null hypotheses

The alternative hypothesis H, is what we would like to

"know if it's true"
> "Something we care about is going on"



Parametric vs. nonparametric hypothesis
tests

Parametric tests assume that the data follow a particular
known distribution

o Distributions such as normal, binomial, chi-squared, etc.

Nonparametric tests make no assumption about the data
and are "distribution-free"



The null distribution represents H,

The null distribution is the sampling distribution of outcomes for
a test statistic assuming the nullis true

Hypothesis testing is sometimes referred to as null hypothesis
significance testing

Hypothesis tests ask:
To what extent are my data expected under the null hypothesis?



Sampling distribution of the null
hypothesis
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Sampling distribution of the null
hypothesis
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Critical values where N(0,1) is the null




The P-value is the area under the curve
for your test statistic

Result of hypothesis test is significant if test statistic falls in
the critical region

For test statistic = 2.25, the
sum of area is less than a

0.15

o
—
(@)

Probability density
:

NOTE: It will not
always be
symmetric




Forming conclusions

Based on your pre-chosen a.:

1. P-value<=a

o Significant results allow us to reject the null hypothesis and conclude
evidence in favor of the alternative hypothesis

2. P-value > a

> We do not have significant results. We fail to reject the null hypothesis,
and we have no evidence in favor of the alternative hypothesis.

The choice of a is totally arbitrary, but usually you will see 0.05 or 0.01



Error rates

o sets the overall false positive rate for our test procedure
o |f the null is true, we falsely reject the null 5% of the time for a=0.05

Truth about population (generally unknown)

Null is true Alternative is true
Reject null (P<=a) Type | error (False | True positive
] positive)
Conclusion — : :
Fail to reject null (P> a ) | True negative Type Il Error (False
negative)



What type of error is it (or is it?)

A new arthritis drug does not have an effect in clinical trials,
even though it actually does reduce arthritis pain. FN (type I)

A person with HIV receives a positive test result for HIV. No error

A person using illegal performing enhancing drugs passes a test
clearing them of drug use. FN (type Ii)

A study found a significant relationship between neck strain and
jogging, when reality there is no relationship. FP (typel)

An healthy individual gets a positive cancer biopsy result.Fp (type )



One-sided vs. Two-sided (or —tailed)

One-sided tests are directional Is data < null?

> Are my data larger/smaller than null?

Two-sided tests are non- ~

p <0.05

d i rect i ona I one-tail critical region
° Do my data differ from null?

Is data > null?

p <0.05

Does data differ
from null?

. P4

p <0.025

p <0.025

two-tail critical region(s)

Total area =«




One-sided vs. Two-sided tests

One-sided tests have more power than two-sided tests

o Power = the ability to detect a true effect

o Also known as true positive rate

One-sided tests are more limited in scope and can get you in
trouble if you choose the wrong direction

You must choose only one test before you look at your data



Approach to hypothesis testing

Decide what question you are interested in answering

Determine the appropriate hypothesis test to use

Check that your data meet the assumptions™® of the test

B w b

Compute the test statistic for your hypothesis test and
the corresponding P-value

5. Draw conclusions using an a priori specified a (P-value
threshold)

*Parametric only



Hypothesis tests to compare means
Test the null hypothesis:

o One sample test: The mean of my sample equals a null value

> Two sample test: The mean of my two samples are equal (difference in means
is 0)

Two options:

o Z-test, where the null distribution is the standard normal N(0,1)
o Test statistic is Z

o t-test, where the null distribution is the Student's t distribution

o Test statisticis t



/-tests vs t-tests

2
Normal populations have the sampling distribution X~N (4, j_ﬁ)

o |ts test statistic is Z = 3:—; where SE =0 /4/n

o Used for z-tests

. . S

Because o is rarely known, we can approximate SE = 7
X—U S
t = where SE; = —
SEz ' X yn



Standard normal and Student's t

Adding t distributions with increasing degrees of freedom
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Student's t where df = 100
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Properties of the t distribution

As df approaches oo, the t distribution approaches N(0,1)

o Usually, df = n—1, where n is sample size 0.41
Like the normal distribution... - 0s.
o t distribution is symmetric 2
> Mean = median = mode 1_5
=
©
Unlike the normal distribution... ¢
o t has *much fatter tails*




Test Assumptions

Sample is a random sample from its population

Sample data is normally distributed




Dive right in: One sample t-test

Null hypothesis One-sided test Two-sided test
Hy:x=u Ho:x>u Hy:x #u
Hyo:x<u

Directional Non-directional




Performing a one-sample t-test

| want to know if the disease, Bad Disease, influences human body temperature.
We know that standard human body temperature is 98.6 degrees F. | measured
the temperatures for a random sample of 15 individuals with Bad Disease. On
average, they have a temp of 99.59 degrees F.

> head(bad.disease.temp)
temp

: : 1 98.17420
Does Bad Disease raise body temperature? > o7 ev137
3 99.00920
. . — 4 100.44158
H, : Bad Disease does not raise body temperature. X = 98.6 |5 99 75153
) . — 6 100.28846

H, : Bad Disease raises body temperature. X >98.6

> mean(bad.disease.temp$temp)
[1] 99.594




Checking assumptions of the test

The t-test assumes that our sample data is normally distributed

3_

count

- Hard to tell if normal from
histogram!

98 99 100 101 102 10
Bad disease temperature for n=15



Assessing normality with a Q-Q plot

Quantile-Quantile plots graphically show if two datasets
come from the same distribution

o |f the points follow the "expectation” line, datasets are similarly distributed

Normal Q-Q Plot Normal Q-Q Plot Normal Q-Q Plot
g 3 § " o g .
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
Theoretical Quantiles Theoretical Quantiles Theoretical Quantiles
Ideal scenario. Data is normal Data is not normal Close enough, let's say normal



Granular data is also normal!
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Making a Normal Q-Q plot

> head(bad.disease.temp)

temp Normal Q-Q Plot
1 98.17420
2 97.62137 8 |
3 99.60920 g T
4 100.44158 S i
5 99.75483 T 8-
6 100.28846 § o

## Uses base R, not ggplot ##
> ggnorm(bad.disease.temp$temp, pch=20)
> gqqgline(bad.disease.temp$temp, col="red")

Theoretical Quantiles

Data approximately follow the QQ line. Therefore, assumptions have been met and we can run the test.



Performing the t-test

1. Calculate the test statistic
2. See where test statistic falls on its distribution

3. Compute P-value as area under the curve past this

statistic

o The P-value is the probability of obtaining a test statistic as large or larger
than that recovered



Compute the test statistic, t

H, : Bad Disease does not raise body temperature. x =98.6
H, : Bad Disease raises body temperature. X >98.6
> mean(bad.disease.temp$temp)
(1] 99.594 X—U 99.59 —98.6
> sd(bad.disease.temp$temp) t= ——= 1.44 = 2.66
(1] 1.438273 Vn V15
> nrow(bad.disease.temp)
(1] 15

this is our test statistic, t,

More precisely, t, g5 4t-14



Find where the statistic falls in
distribution
Our null distribution is a t distribution with df = 14 (15-1)

0.4 1

This area is our P-value because we test if E98. 6

# P(X >= 2.66) ##
> 1 - pt(2.66, 14)
0.009

Probability Density
o
N




Forming conclusions

Our P=0.009, which is less than a=0.05. Therefore we

reject the null hypothesis and we have evidence that Bad
Disease raises body temperature.

H, : Bad Disease does not raise body temperature. X
H, : Bad Disease raises body temperature. X



Approach to hypothesis testing

1. Decide what question you are interested in answering
Is the mean of my data equal to 98.67

2. Determine the appropriate hypothesis test to use
Use a one-sample t-test

3. Check that your data meet the assumptions of the test
We confirmed the data is normally distributed

4. Compute the test statistic for your hypothesis test and the corresponding

P-value
We found t = 2.66 and P=0.009

5. Draw conclusions using a specified P-value threshold

At o = 0.05, we reject the null hypothesis and find evidence that Bad Disease raises body
temp.



Effect size
The effect we observed here is 99.59 — 98.6 = 0.99

Statistical significance is not the same as biological
significance .

3- Comparison between red and blue samples
will show a significant difference between
means.

But does it matter?

1.0 15 2.0 25 3.0




Confidence intervals

Range of values surrounding the sample estimate that is
likely to contain the population parameter

Generally we calculate the 95% confidence interval (goes
with o = 0.05)

In 95% of random samples, this will be true:

X — (tpo25 * SEz) < u <X+ (tgo2s5 * SEx)



95% Confidence Interval

95%
Confidence Interval

- - m e m—mm
R i e e

' 1
Lower Sample Upper
Confidence Effect Size Confidence
Limit Limit



Conceptualizing the ClI

%
T

10 random samples, in no particular order

E —+ { T True population mean

i ample effect

95% ClI

9/10 (~95%) of these random samples has a 95% confidence interval that overlaps the true mean




Does this figure represent 95% Cls?

P

10 random samples, in no particular order

E True population mean

NO. If anything, these are 40% Cls



Calculating the CI

Construct upper and lower limits of 95% Cl
o Lower: X — (tp.025 * SE%)

o =% J—
o Upper: X + (tg 25 * SEz ) 95% Cl =X + (£o.025 * SEx )

= 99,59 + 0.371
### Calculate t_0.025

> qt(0.025, 14)

[1] -2.144787 The true population mean is 95% likely

to be in the range 99.22 - 99.96

### Calculate t_0.025*SE
> t <- abs(qt(0.025, 14))
> se <- sd(bad.disease.temp$temp)/sqrt(15)
> t * se
[1] 0.3713605



Bring it all together

We have a sample mean of 99.59 with a standard error of 0.19.

Our test statistic ty_,, = 2.66, giving a P-value = 0.009. We reject the null
hypothesis at a = 0.05 and have evidence that Bad Disease raises
temperature.

Our effect size is 0.99.

We found a 95% Cl of 99.59 + 0.371, giving the likely range for the true
population parameter. Note that the null of 98.6 is not in the CI.



Reporting non-significant results

Let's say we found ty.,, = 1.05 > P=0.15 % taieiare Prdtue
[1] 0.1557531

At o = 0.05, we fail to reject the null hypothesis. We have

no evidence that Bad Disease raises body temperature.

> Does not mean that Bad Disease doesn't raise the temperature — our sample
just had no evidence for this effect.



What is a P-value?

The P-value is an area under the curve of the null

distribution

o |t is therefore the probability of observing this effect or larger assuming the
null hypothesis is true

o P-value = P(effect or more observed | H, is true)

o P-value = 0.009: If H, is true, | would obtain this effect or larger (t>=2.66) in
0.9% of such studies due to random sampling error



What is a P-value?

A low P-value means that the data are unlikely under the

null

> We therefore make an educated guess that there is probably something else
going on, such as the alternative hypothesis

> We can never rule out the possibility that results were fully consistent with
null, just unlikely



P-values are not magic

P-values cannot evaluate whether H, or H, is true
o Large P-values do not prove the null is true

o Small P-values do not prove the alternative is true. They merely suggest the null likely
isn't.

P-values do not give the probability that you made the right

conclusion

Two studies with the same P-value do not provide the same
weight of evidence



Distribution of P-values

| perform 1000 t-tests on random samples from N(3.5, 1)
and compare to null mean = 3.5. Therefore, null is true.

Count

0 20 40 60 80

I I I I I
0.2 0.4 0.6 0.8 1.0

Pvalues

P <= 0.05 = False positives



Distribution of P-values

| perform 1000 t-tests on random samples from N(3.5, 1)
and compare to null mean = 2. Therefore, null is false.

600

Count
400

200

o B

0.0 0.2 0.4 0.6 0.8 1.0
P <= 0.05 = True positives

Only ~67% of distribution! P-values




P-values and effect size
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P-values are strongly influenced by

sample size
X — 99.59 —98.6
t=E= 22" — 266> P=0.009
ND V15
X — 99.59 —98.6
t= L= 22""""" — 688> p=2.81e-10
NG V100

Increasing sampling size increases power

Power is the probability you detect a true effect,
l.e. true positive rate



P-values are kind of an accident

Personally, the writer prefers to set a low standard of
significance at the 5 percent point . . .. A scientific fact
should be regarded as experimentally established only if a
properly designed experiment rarely fails to give this level
of significance.

- R.A. Fisher




To recap

We have performed a one-sided t-test to test the
alternative hypothesis that x > 98.6

We can also perform a two-sided t-test to test the non-
directional alternative hypothesis that x + 98. 6



Compute the test statistic, t

H, : Bad Disease does not affect body temperature. x =98.6 X =99.59
H, : Bad Disease affects body temperature. X +98.6 U= i§6
n=

> head(bad.disease.temp)

temp
1 98.17420 X—p _ 99.59 —98.6
2 97.62137 t = T = A% — 266
3 99.00920 — -
4 100.44158 n V15
5 99.75483
6 100.28846

this is our test statistic, t, .,

> mean(bad.disease.temp$temp) ]

[1] 99.594 More precisely, t, ¢ 45-14
> sd(bad.disease.temp$temp)

[1] 1.438273



Computing the P-value

For a two-sided test, we consider both extremes

0.4 -

Probability Density
o
[\

This combined area is our P-value = 0.018

## P(X >= 2.66) or P(X<=-2.66)
> 2 * (1 - pt(2.606, 14))
0.018006




When running a one-sided t-test goes
wrong

For sample of n=20, | want to test x < u where ©u=5.8

> head(example.sample)

values —
1 5.511307 XxX—u 632-—58 B
2 5.012612 t = T = 083 = 2801
3 6.178421 .
4 7.587568
5 6.892165 \/ﬁ V20
6 5.197049

> mean(example.sample$values)
[1] 6.325366

> sd(example.sample$values)
[1] 0.8295474



The area below the statistic is our P-
value for x < u

0.4 -

> pt(2.801, 19)
[1] 0.99430006

Probability Density
O o
N @

o
—

0.0 -
—4 D 0 2 2.801 4




Two-sample t-tests

Compare means of two samples ( X;and X, ) to each other.

Are the underlying population means p;and u, the same?

Null hypothesis One-sided test Two-sided test
Ho g = 1z Hatpy > 1 Hat g # 12

Hy ity < 2 '
Ho:pt1 -2 =0 Hotttgy —p2> 0 Hytpy —pp 70

Hatptp — 2 < 0



Formulas for two-sample t-test

1%
SEz,-x,
1 1
SEz.-%, = |Sp (— + —) Standard error for two samples
V nq n,
dfis? + df,ss ,
s2 = fisi +df>s Pooled sample variance

P df; +df;

df =df; +df, =n, +n, —2 Degrees of freedom for t distribution



Two-sample t-test assumptions

Both samples must be distributed normally

Samples should have equal variances
o F-test can compare variances of samples to check assumption, but it is highly
sensitive and will "too often" reject the null.
o Levene's test will test for homogeneity of variances as well
o Can use Welch's t-test when variance assumption is not met

For this class, we focus on normal assumption



Two-sample vs. paired t-test

Paired t-test is a special case where the two samples being

compared have a natural pairing

o Effectively a one-sample t-test where we test the if difference between two
samples =0

Paired t-test must check assumption that difference
between means is normal

You can always perform a two-sample instead of paired, but
paired will have more power



Paired scenarios

Making two measurements on each subject

Ma <ing repeat measurements on the same subject at two
time points
> Before and after treatment

Matching subjects with similar age, sex, etc.

Placing subject and control in close proximity



s it paired or independent?

Triglyceride levels of a group of subjects is compared before and after taking a vitamin
supplement. pyired

For a clinical trial, one group is given a vitamin and the other a placebo. Their
triglyceride levels are compared. Independent

For a clinical trial, two groups with individuals matched for age, sex, and health history
are given vitamin and placebo, respectively. Triglyceride levels are compared. Paired

| measure free energies, between inactive and active conformations, for 30 enzymes. Paired

A clinical trial tests a new drug on 20 sets of twins, giving, for each twin pair, one a Paired
placebo and one the drug. Comparisons between placebo and drug groups are made.

A clinical trial tests a new drug on 20 sets of twins, randomizing all individuals into a
placebo group and or a drug group. Comparisons between groups are made. Independent



s it paired or independent?

Paired: Can | draw a line between individuals in groups?
> Must be same N per group, by definition

Independent: No natural way to draw the lines.

—_
(¢}
1

Measured value
)

(3}
1

Paired groups



Troubleshooting: Failure to meet normal
assumption

1. If sample size is large enough (>~30), Central Limit
Theorem kicks in and assumptions are effectively met

2. If sample is size is small (<~30) we can either:
> Transform the data to be normal
o Use a nonparametric test



Non-normal data

right skew left skew long tails
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Data transformations
Log of data: x =2 log(x)

Square root of data: x =2 sqrt(x)

Inverse of data: x=> 1/x



Data transforms: Caution

Your test will now run on transformed data
> Assume log transform performed and result has effect size 1.5
o Actual effect size is exp(1.5) = 4.48

Instructor Editorializing:

Be careful of O's in data Much like Z-tables, data
> 1/0 and log(0) are undefined transforms are mostly historical

> Hack: Replace all 0's with tiny number like 1e-8



