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Random variable

Random processes produce numerical outcomes:

> Number of tails in 50 coin flips

> The sum of everyone's heights

Definition: a random variable is a function that maps outcomes of a

random process to a numeric value
o X is a function (rule) that assign a number X(s) to each outcome s €S (where s is an
event in sample space S)
° rv.'s are technically neither random nor variables...
o But, you can think of them roughly numerical outcomes of random processes



Discrete vs continuous RV

Discrete random variables can take on (map to) a finite
number of values

Continuous random variables can take on (map to)
innumerable/infinite values



Expressing discrete random variables

Probability mass function (PMF)

o> Describes the values taken by a discrete r.v. X and its associated probabilities

> Function that assigns, to any possible value X of a discrete r.v. X, the
probability P(X = x)

PMF for rolling a fair die
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PMF properties
0 <PX=x)<1

YP(X=x) =1

PMF is simply a fancier term for a discrete probability
distribution



Expressing discrete random variables

Cumulative distribution function (CDF)
o Function defined, for a specific value X of a discrete r.v. X, as F(x) = P(X < x)

CDF for rolling a fair die




CDF properties
0 <F(X)<1

CDF functions are non-decreasing




PMF vs CDF

PMF: What is the probability of event X?

CDF: What is the sum of probabilities for all events < X?




Expectation and spread of random
variables

The expectation of a r.v. is the probability-weighted average
of all possible values (i.e., mean)

“E(X) = u= 2ixip(x;)
The variance of ar.v. is defined

Var(X) = 0% = E[(X — w)?] = Xi[x/p(x)] — p?
cVar(X) = E[X?] — E[X] 2



Example: The Binomial distribution

The binomial distribution describes the probability of
obtaining k successes in n Bernoulli trials, where the
probability of success for each trial is constant at p

A Bernoulli trial has a binary outcome (success/fail,

true/false, yes/no), and P(success) = p is the same for all
realizations of the trial



The BInS conditions

To be binomially distributed, must satisfy the following:

Binary outcomes

Independent trials (outcomes do not influence each other)

n is fixed before the trials begin

Same probability of success, p, for all trials



Is it binomial?

A bag contains 10 balls, 7 red and 3 green.

Situation 1: You draw 5 balls from the bag, noting the ball color
each time and then returning it to the bag. Yes!

Situation 2: You draw 5 balls from the bag, retaining each drawn
ball for safe-keeping so you can play catch at any moment. No ®

Situation 3: You keep drawing balls, with replacement, until you
have drawn 4 red balls. No ®



The binomial distribution

The PMF (probability distribution) for a binomially-
distributed random variable:

POC= 1) = (DpF(L— )= (DpkqH

n!

The binomial coefficient: (Z) ~ k(K

o read as "n choose k"



Wikipedia weighs in

binomial
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The binomial distribution

The expectation for a binomial r.v.
*E(X) = u=np

The variance for a binomial r.v.
°Var(X) = 6% = npq = np(1 — p)

We write binomially distributed r.v.'s as X~B(n, p)



Example: Playing with a binomial rv

Each child born to a particular set of parents has a 25% probability of
having blood type O. Assume the parents had five children.

Here, n =5 and p = 0.25, meaning we define Type O as "success", and
not Type O as "failure". = X~B(5, 0.25)

Tasks:

Compute expectation and variance
o Visualize PMF
o Visualize CDF
> Make some calculations...



Expectation and variance

Each child born to a particular set of parents has a 25%
probability of having blood type O. Assume the parents had

five children. B(5, 0.25)

E(X) = u=np=5*0.25=1.25
Var(X) = 6% = npq = np(1 — p) =5*0.25*0.75 = 0.9375



Visualize the PMF
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?distributions

Distributions in the stats package

Description:
Density, cumulative distribution function, quantile function and
random variate generation for many standard probability
distributions are available in the ‘stats’ package.

Details:

The functions for the density/mass functlon cumulative
distribution function, quantile i
generation are named in the form 7, ‘pxxx’, ‘gxxx’ and ‘rxxx’
respectively.

For the beta distribution see ‘dbeta’.
For the binomial (including Bernoulli) distribution see ‘dbinom’.
For the Cauchy distribution see ‘dcauchy’.

For the chi-squared distribution see ‘dchisq’.



Distribution functions, generally

Function Purpose Binomial version
dxxx() Probability distribution |dbinom(x, size, prob)
pxxx() CDF pbinom(q, size, prob)
rxxx() Generate random rbinom(n, size, prob)
numbers from given
distribution

gxxx() Quantile: Inverse of gbinom(p, size, prob)
pPxxX()




Binomial distribution functions

Binomial function

Example

Output

dbinom(x, size, prob)

dbinom(2, 5, 0.25)

Prob of obtaining 2 successesin 5
trials, where p=0.25 - 0.263

pbinom(qg, size, prob)

pbinom(2, 5, 0.25)

Prob of obtaining <2 successes in 5
trials, where p=0.25 = 0.896

rbinom(n, size, prob)

rbinom(100, 5, 0.25)

Generate 100 k values from this
binomial dist. 2 100 from {0,1,2,3,4}

gbinom(p, size, prob)

gbinom(@.896, 5, 0.25)

Smallest value x where F(x) >= p* 2> 2

*not prob success, just a prob



Probability Type O
o o o

Making the PMF

> ## Use dbinom() to get the PMF values

>p =0.25

>n=2>5

> k@ <- dbinom(@, 5, 0.25) ## Prob of 0 successes, aka no children are Type O
> k1 <- dbinom(1, 5, 0.25) ## Prob of 1 success, aka only 1 child is Type O

> ## Advanced:

> library(purrr)

> map_dbl(@:5, dbinom, 5, 0.25)
[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 0.0146484375
[6] 0.0009765625



Making the PMF

## data frame (tibble) of probabilities for PMF
> data.pmf <- tibble(k = 0:5, prob = c(0.236623, 0.396, 0.264, 0.0879, 0.0145,

0.000977))
> data.pmf

# A tibble: 6 x 2

k prob

<int> <db1>

1 0 0.236623

2 1 0.396000

3 2 0.264000

4 3 0.087900

5 4 0.014500

6 5 0.000977

## Equivalent
> data.pmf <- tibble(k = 0:5, prob = map_db1(0:5, dbinom, 5, 0.25))



Making the PMF uses a different *stat™

> ggplot(data.pmf, aes(x = k, y=prob))+ geom_bar( stat="identity" ) +
xLab("Number of kids") + ylab("Probability Type 0")
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Tweaking the x-axis

> ggplot(data.pmf, aes(x = k, y=prob))+ geom_bar( stat="identity" ) +
ylab("Probability Type 0") +
scale_x_continuous(name = "Number of kids", breaks = 0:5)
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Adding some text

> ggplot(data.pmf, aes(x = k, y=prob))+ geom_bar( stat="identity" ) +

ylab("Probability Type 0") +
scale_x_continuous(name = "Number of kids", breaks = 0:5) +

geom_text(aes(x = k, y= prob + 0.01, label = prob))
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Visualize the CDF

> binom.sample <- tibble(x = rbinom(1000, 5, 0.25))

> ggplot(binom.sample, aes(x=x)) + stat_ecdf() +
xlab("# Type 0 kids") + ylab("Cumulative probability")
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Solving for probabilities

Each child born to a particular set of parents has a 25% probability of having
blood type O. Assume the parents had five children. B(5, 0.25)

What is the probability that exactly 2 children were Type O?

> dbinom(2, 5, 0.25) >4
[1] 0.2636719
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Solving for probabilities

Each child born to a particular set of parents has a 25% probability of having
blood type O. Assume the parents had five children. B(5, 0.25)

What is the probability that exactly 2 children were Type O?
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Solving for probabilities 8(5, 0.25)
What is the probability that 2 or fewer children were Type O?

1.00 1

> pbinom(2, 5, 0.25) < ’]
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Solving for probabilities B(5, 0.25)
What is the probability that 2 or fewer children were Type O?

> dbinom(@, 5, 0.25) +
dbinom(1, 5, 0.25) +
dbinom(2, 5, 0.25)

[1] 0.8964844

Probability Type O

Numbenof kids




Solving for probabilities B(5, 0.25)
What is the probability that more than 2 children (ie either 3, 4,

or 5) were Type O?
> 1 - pbinom(2, 5, 0.25) o —I:I

[1] 0.1035156
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Solving for probabilities B(5, 0.25)

What is the probability that more than 2 children (ie either 3, 4,
or 5) were Type O?

> dbinom(3, 5, 0.25) + |
dbinom(4, 5, 0.25) + O 03-
dbinom(5, 5, 0.25) ,‘_i
[1] 0.1035156 §01_ I
0.0~ SRS 00009765625
o 1 5 L2 ' '
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Expressing continuous random variables
Probability density function (PDF)

o Describes the values taken by a continuous r.v. X and its associated
probabilities

o Function such that the area under the curve between any two points a, b
corresponds to the probability that the r.v. falls between a, b

°> P(a <X <b) = fff(x)dx



PDF

b
Pla <X <b) = j f(x)dx

Probability density




PDF properties

Continuous r.v.'s are infinitely precise: P(x =x) =P(x <X <x) =0
o Exactly unlike PMFs

Total area under the PDF equals 1: f_oooof(x)dx =1

Probabilities aren't negative: f(x) = 0



Expressing continuous random variables

Cumulative distribution function (CDF)
o Function defined, for a specific value X of a continuous r.v. X, as F(x) = P(X < x)
o (mostly) the same as for discrete
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Relationship between PDF and CDF
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Jumping right in: Normal distribution

The PDF (probability distribution) for a normally-distributed
random variable:

It's gross, everyone knows it, and

2
f(X) _ 1 exp {—(x—[,t) } you will be neither plugging nor
V21o?

202 chugging with this equation

We write normally distributed r.v.'s as X~N (u, 0%)



PDF of normal distribution

Example, let's say women's heights (cm) are normally
distributed according to N(165, 64)

o Pop quiz: what is the standard deviation of this distribution?
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Wikipedia weighs in

Normal distribution

Probability density function Cumulative distribution function
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Making the PDF

Another "interesting" hack:

> plot.range <- tibble(x = c(165 - 32, 165 + 32))

> ggplot(plot.range, aes(x=x)) +
stat_function(fun = dnorm, args=list(mean=164, sd=8))
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Making the CDF

> data.cdf <- tibble(x = rnorm(10000, 164, 8))
> ggplot(data.cdf, aes(x=x)) + stat_ecdf()
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Expectation and variance

Any guesses?

It's in the definition: X~N (u, 0%)




Working with the normal distribution

Types of questions one can ask:
> What is the probability that a randomly-chosen woman is taller than 158 cm?

o What is the probability that a randomly-chosen woman is between 163—170
cm tall?

> What is the probability that a randomly-chosen woman is shorter than 167
cm?

> What is the probability that a randomly-chosen woman is 168 cm tall?



Working with the normal distribution

Types of questions one can ask:
> What is the probability that a randomly-chosen woman is taller than 158 cm?

o What is the probability that a randomly-chosen woman is between 163—170
cm tall?

> What is the probability that a randomly-chosen woman is shorter than 167




Properties of the normal distribution

Symmetric around the mean 4 99.7% ofthe data are within

3 standard deviations of the mean

95% within

Mean = median = mode ——— 2 sendardduistions ——)
68% within
«—— 1 standard —>
deviation

Inflection
points
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Introducing the standard normal: X~N(0,1)
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Standard Normal X~N(0,1)
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PDF and CDF of X~N(0,1)

0.4 L PriX<x) = o) = If the shaded grey area = 0.977, what is x?
area to the left of x




Standard Normal X~N(0,1)

Due to symmetry, P(X<-x) =1-P(X<x)
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For X~N(0,1), what is the probability P(X <0.47)?
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# CDF: P(X <= 0.47)

> pnorm(0.47)
[1] 0.6808225
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Normal distribution functions

0.4 1

Normal function Meaning
dnorm(x) Density at X=x
=
pnorm(q) P(X <= x) § 0.2
rnorm(n) Generate n random draws Trome._ O
N(0,1)
gnorm(p) Obtain x from given CDF area: 011
gnorm(@.6808225) = 0.47




For X~N(0,1), what is the probability
P(-1.32 < x < 0.47)?

Probability




For X~N(0,1), what is the probability
P(-1.32 < x < 0.47)?

TS V. AN T R LI B B R
# P(X <= 0.47) # P(X <= -1.32)
0.587405 > pnorm(0.47) > pnorm(-1.32)

[1] ©0.6808225 [1] 0.09341751




For X~N(0,1), what is the probability
P(-1< x < 1)?

AKA probability of being within 1 standard deviation of
mean?

~0.68




For X~N(0,1), what is the probability

P(x >2.14)?

## Two approaches:

> 1 - pnorm(2.14)
[1] 0.01617738

> pnorm(-2.14)
[1] 0.01617738

0.4 4

Probability
o o o
—_ N CJlO

o
o
L

2 3
l\2.14



For X~N(0,1), the top 8% of the
distribution falls above what number?
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> gnorm(1l - 0.08)
[1] 1.405072

> -1 * gnorm(0.08)
[1] 1.405072

Probability
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Historical consideration of z-scores

Table of Standard Normal Probabilities for Negative Z-scores Table of Standard Normal Probabilities for Positive Z-scores

0.00 0.01 0.02 0.03 X 0.06 0.07 0.08 z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
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06 07257 07291 07324 07357 07389 07422 07454 0748 07517 07549
07 07580 07611 07642 07673 07704 07734 07764 07794 07823 07852
08 07881 07910  0.793 7967 0; 08023 08051 08073 08106 08133

09 08159 08186 08289 08315
1.0 08413 08438 08531 0.8554
11 08643 0.8665 08749 08770
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Re-scaling to standard normal to
compare distributions

x_
7 — 2°H
o
ox = distribution value of interest ("raw score"

i, 0 = r.v./population mean, standard deviation




Example: Weight for a population of rabbits
follows a normal distribution N(2.6, 1.1)

What is the Z-score for a 3 pound rabbit?

X— 3—2.6
/ = H_ = 0.381 Does is make sense that this number is positive?

o V1.1

What is probability a rabbit weighs less than 3 pounds?
pnorm(@.381) = 0.648

pnorm(3, 2.6, sqrt(l1.1)) = 0.048 THE FUTURE IS NOW



Normal distributions functions, revisited

All functions assume standard normal. Provide additional
arguments for other normals:

Standard normal Any normal

pnorm(q) = pnorm(q, 0, 1) pnorm(q, mean, sd)



/-scores are most useful for comparing
different distributions

Weight for rabbit pop A is distributed N(2.6, 1.1)
Weight for rabbit pop B is distributed N(2.9, 0.17)

Which of these two rabbits is bigger? Pop A rabbit weighting 2.95
lbs, or pop B rabbit weighing 3.1 |bs?

X—u _ 2.95-2.6

Population A: Z = = - AT 0.334
. L, X—p _ 31-29 _
Population B: Z = = = 0.485



Putting it all together

The height of European men is distributed as N(175, 53.3)
The height of European women is distributed as N(162.5,34.8)

What proportion of men is shorter than 150 cm, aka P(man < 150)?

Using Z-scores Skipping Z-scores
7 = XTH _ 150-175 _ 3424 > pnorm(150, 175, sqrt(53.3))
o V/53.3 ' [1] 0.0003081516

> pnorm(-3.424)
[1] 0.0003085331



Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

What proportion of women is taller than 162.5 cm? 50%




Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

What proportion of women is taller than 170 cm?

Using Z-scores Skipping Z-scores

X—p _ 170-1625 _ 12713 > 1 - pnorm(170, 162.5,

o /348 sqrt(34.8))
[1] ©0.1017987

/ =

> 1 - pnorm(1.2713)
[1] 0.101811



Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

What is the tallest a woman can be and still be in the bottom 22%7?

Using Z-scores Skipping Z-scores
> ghorm(0.22) > gnorm(0.22, 162.5, sqrt(34.8))
[1] -0.7721932 [1] 157.9447

7= > x=Zo+u

o

= —0.7722 *V34.8 + 162.5
=157.9cm



Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

What is the shortest a woman can be and still be in the top 22%?

Using Z-scores Skipping Z-scores
> -1 * gnorm(0.22) > ghorm(1-0.22, 162.5, sqrt(34.8))
[1] 0.7721932 [1] 167.0553

7= > x=Zo+u

o
= 0.7722 *V34.8 + 162.5
=167.05cm



Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

What is the probability a randomly chosen man is between 175-182 cm tall?

> P(X<182) - P(X<175) = P(X<182) — 0.5

> pnorm(182, 175, sqrt(53.3)) - 0.5
[1] 0.3311738



Men: N(175,53.3)

Putting it all together Women: N(162.5,348)

What is the probability a randomly chosen man is either between 175-182
cm tall or between 150—160 cm tall?

> P(175 < X < 182) + P(150 < X < 160)

### First probability
> pnorm(182, 175, sqrt(53.3)) - 0.5
[1] 0.3311738

> ### Second prob.
> pnorm(160, 175, sqrt(53.3)) - pnorm(150, 175, sqrt(53.3))
[1] 0.01965059

> 0.3311738 + 0.01965059
[1] 0.3508244



Men: N(175,53.3)

Putting it all together Women: N(162.5,348)

| have two randomly-chosen European friends, one man and one woman each.
What is the probability the man is at least 180 cmm and the woman is between
163—170 cm?

- P(man > 180) x P(163 < woman < 170)

### First probability
> 1 - pnorm(180, 175, sqrt(53.3))
[1] 0.2467138

> ### Second prob.
> pnorm(170, 162.5, sqrt(34.8)) - pnorm(163, 162.5, sqrt(34.8))
[1] 0.3644282

> 0.246713*%0.30644282
[1] ©0.08990917



Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

| have two new randomly-chosen European friends, one man and one woman each.
What is the probability the man is 180 cm and the woman is 163 cm?

- P(man = 180) x P(woman = 163)
20




Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

Assume 50.8% of Europeans are women. If a randomly-chosen person is shorter
than 155 cm tall, what is the probability the person is a woman?

- P(woman | < 155) = P(<155 | woman) * P(woman) / P(<155)
0.102 0.508

### P(<155 | woman)
> pnorm(155, 162.5, sqrt(34.8))
[1] 0.1017987



Solving the denominator
P(<155) = P(<155 and man) + P(<155 and woman) =

P(<155|man)*P(man) + P(<155|woman)*P(woman)
0.0031 0.492 0.102 0.508

= 0.0533

### P(<155 | man)
> pnorm(155, 175, sqrt(53.3))
[1] 0.003076926



Men: N(175,53.3)

Putting it all together Women: N(162.5,34.8)

Assume 50.8% of Europeans are women. If a randomly-chosen person is shorter
than 155 cm, what is the probability the person is a woman?

- P(woman | < 155) = P(<155 | woman) * P(woman) / P(<155)
0.102 0.508 0.533

=0.972
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Statistical inference




Two main flavors of statistical inference

Estimation

o Estimate a population parameter from sample data

o Point estimates: What is the population mean?

° Interval estimates: In what range of values is the population mean likely to fall?

Hypothesis testing
o Test whether the value of a population parameter is equal to some specific value
o |s there evidence that my sample differs from some underlying population?



The sampling distribution

The probability distribution of values for an estimate that
we obtain under sampling




Obtaining a sampling distribution

> genes <- read.csv("genes.csv") _
> head(genes) 3000 - 1
nucleotides 5
3785

7416

2135 20007

7682

5766

11079

count

oOuUulph WN -

1000 1

> mean(genes$nucleotides)
[1] 2761.039 (
> sd(genes$nucleotides) 04

[1] 2037.645 0 5000 10000 15000
nucleotides

> ggplot(genes, aes(x=nucleotides)) +
geom_histogram(fill="white", color="black™)

=1 T T—




Obtaining a sampling distribution

### the function sample_n draws a random sample of rows

> small.sample <- genes %>%. sample_n(25) The sample mean for a random sample of
> mean(small.sample$nucleotides) N=25is% = 2151. 8
[1] 2151.8

3. —

> ggplot(small.sample , aes(x = nucleotides)) +
geom_histogram() +
geom_vline(xintercept=2151.8, color="blue") + ? 1 N ] I
geom_vline(xintercept= 2761.039, color="red")

count

geom_vline(xintercept=..) H | {‘{ w
geom_hline(yintercept=..) 0
geom_abline(yintercept=.., slope=..) 0 1000 2000 3000 4000

nucleotides



Obtaining a sampling distribution

Now imagine we draw 20 samples of N=25 and compute
each of their means:

Sampling distribution of the mean

> head(n20.means) 31 u u
sample.mean
2584 .84
2574.12
2382.64 2 — —

' [

c
2252 .56 3
(&)

2000 2500 3000 3500

2368 .44
sample.mean

SOuUTh~ WN




Quantifying the sampling distribution

The standard error is the standard deviation of the estimate
of the sampling distribution

o Standard error of the mean: SE; =

S

approximate with 7

9
\/ﬁ’
o SE is not the standard deviation of a sample

> Here, n represents the number of samples (not the sample size)

It also quantifies the precision of our estimate, i.e. how far
from the population parameter we are



Computing the standard error of the

mean

> head(n20.means)
sample.mean

1 2584 .84 3-
2 2574.12
3 2382.64
4 3143.68
5 2252 .56
§) 2368.44

count

> sd(n20.means$sample.mean) / sqrt(20) f-

[1] 93.11888

Sampling distribution of the mean

|

|

|

2500

3000

sample.mean

3500



Several sampling distributions
comprised of N samples, each of n=25

N=20 N=50 N=100 N=1000 N=10000

3 — — 5 - ~ ~ 100+ - 1200 1 |
10.01 .
4 751 900 A I
2] ] 3 - 7.51 ] ~ I M ]
§ § § § 50 1 g 600 1
o 02_ | | 1 o 5.0 (8] o
1_ -
HH |7 H |V H |_H H ) _ i -
01 01 0.0 HH 1 0{ & CECL—= Q)
2000 2500 3000 3500

2000 2500 3000 3500 4000 2000 2500 3000 3500 4000 2000 3000 4000 2000 3000 4000




Standard error decreases as N increases

N=20 N=50 N=100 N=1000 N=10000

3. _ _ 5 N . 1251 100 - 12001 |
10.01 .
4 1 900 - ]
a— — 31 M M -— W M a— M — ]
S 501 600 1
o [e] 8 o o
(&) (8] 24 | | | 5.0 (8] (&)
1 . -
u 251 300 1
! H H —‘ —H H H N ‘H_’_H_H_‘
04 04 0.0 H H |_| 0 O - — 04
2000 2500 3000 3500 2000 2500 3000 3500 4000 2000 2500 3000 3500 4000 2000 3000 4000 2000 3000 4000
sample.mean sample.mean sample.mean sample.mean sample.mean

SE=93.1 SE =58.1 SE =37.9 SE=13.3 SE =4.02



Therefore, mean of sampling distribution
approaches population mean 2761.039

N=20 N=50 N=100 N=1000 N=10000

3. _ _ 5 N . 1251 100 - 12001 |
10.0 1 a
4 751 900 I
21 N - 7.5 ] ~ r i
- - - = | .
=1 =1 S 501 S 600
[e] [} 8 [e] o]
(&) (8] 24 | | | 5.0 (8] (&)
1 . -
u 25 1 300+
| H H —‘ —H H H N M
04 04 0.0 H H |_| 0 [l - — 04
2000 2500 3000 3500 2000 2500 3000 3500 4000 2000 2500 3000 3500 4000 2000 3000 4000 2000 3000 4000
sample.mean sample.mean sample.mean sample.mean sample.mean

SE=93.1 SE =58.1 SE =37.9 SE=13.3 SE =4.02
X =2780.89 X =2753.91 x =2781.51 X =2777.02 X =2763.82



The Central Limit Theorem

As sample size increases, the sampling distribution of the
mean will be approximately normal regardless of true

population distribution
.l || Population distribution 12001 L. N=1e4 sampling distribution
900 - ]

_2000{ [|[] SN
3 i % 6001 | M

1000 A

04 i ..
0 50?& cleoti d;gooo 15000 2000 3000 4000

sample.mean



Next week..

Introduction to hypothesis testing and comparing means

More fun facts on estimation will come later in the semester,
to be bundled with *likelihood*




