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Random	variable	
Random	processes	produce	numerical	outcomes:
◦ Number	of	tails	in	50	coin	flips
◦ The	sum	of	everyone's	heights

Definition:	a	random	variable	is	a	function	that	maps	outcomes	of	a	
random	process	to	a	numeric	value
◦ X is	a	function	(rule)	that	assign	a	number	X(s) to	each	outcome	s ∈S (where	s is	an	
event	in	sample	space S )

◦ r.v.'s are	technically	neither	random	nor	variables…
◦ But,	you	can	think	of	them	roughly	numerical	outcomes	of	random	processes



Discrete	vs	continuous	RV
Discrete random	variables	can	take	on	(map	to)	a	finite	
number	of	values

Continuous	random	variables	can	take	on	(map	to)	
innumerable/infinite	values



Expressing	discrete	random	variables
Probability	mass	function	(PMF)
◦ Describes	the	values	taken	by	a	discrete	r.v.	X and	its	associated	probabilities	
◦ Function	that	assigns,	to	any	possible	value	x of	a	discrete	r.v.	X,	the	
probability	P(X = x)
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PMF	properties
	0	 ≤ 𝑃 𝑋 = 𝑥 ≤ 1

∑𝑃 𝑋 = 𝑥 	 = 1�
�

PMF	is	simply	a	fancier	term	for	a	discrete	probability	
distribution



Expressing	discrete	random	variables
Cumulative	distribution	function	(CDF)
◦ Function	defined,	for	a	specific	value	x of	a	discrete	r.v.	X,	as	F(x) = P(X ≤ x)
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CDF	properties
	0	 ≤ 𝐹 𝑋 ≤ 1

CDF	functions	are	non-decreasing



PMF	vs	CDF
PMF:	What	is	the	probability	of	event	X?

CDF:	What	is	the	sum	of	probabilities	for	all	events	≤	X?



Expectation	and	spread	of	random	
variables
The	expectation of	a	r.v.	is	the	probability-weighted	average	
of	all	possible	values	(i.e.,	mean)
◦𝔼 𝑋 = 	𝜇 = 	∑ 𝑥/	𝑝(𝑥/	)�

/

The	variance	of	a	r.v.	is	defined
◦𝑉𝑎𝑟 𝑋 = 𝜎7 = 	𝔼[ 𝑋	 − 	𝜇 7] = 	∑ [𝑥/7𝑝(𝑥/	)�

/ ] 	− 𝜇7

◦𝑉𝑎𝑟 𝑋 = 𝔼[𝑋7] 	− 𝔼[𝑋]	7



Example:	The	Binomial	distribution
The	binomial	distribution describes	the	probability	of	
obtaining	k successes	in	n	Bernoulli	trials,	where	the	
probability	of	success	for	each	trial	is	constant	at	p

A	Bernoulli	trial has	a	binary	outcome	(success/fail,	
true/false,	yes/no),	and	P(success)	=	p is	the	same	for	all	
realizations	of	the	trial



The	BInS conditions
To	be	binomially	distributed,	must	satisfy	the	following:

Binary	outcomes

Independent	trials	(outcomes	do	not	influence	each	other)

n is	fixed	before	the	trials	begin

Same	probability	of	success,	p,	for	all	trials



Is	it	binomial?

Yes!

No	L

A	bag	contains	10	balls,	7	red	and	3	green.

Situation	1:	You	draw	5	balls	from	the	bag,	noting	the	ball	color	
each	time	and	then	returning	it	to	the	bag.	

Situation	2:	You	draw	5	balls	from	the	bag,	retaining	each	drawn	
ball	for	safe-keeping	so	you	can	play	catch	at	any	moment.	

Situation	3:	You	keep	drawing	balls,	with	replacement,	until	you	
have	drawn	4	red	balls.	 No	L



The	binomial	distribution
The	PMF	(probability	distribution)	for	a	binomially-
distributed	random	variable:

	𝑃 𝑋 = 𝑘 = 	 <
= 𝑝

=(1 − 𝑝)(<>=)= <
= 𝑝

=𝑞(<>=)

The	binomial	coefficient:	 <= = 	 <!
=! <>= !

◦ read	as	"n	choose	k"	



Wikipedia	weighs	in



The	binomial	distribution
The	expectation for	a	binomial	r.v.	
◦ 𝔼 𝑋 = 	𝜇 = np

The	variance	for	a	binomial	r.v.	
◦ 𝑉𝑎𝑟 𝑋 = 𝜎7 = npq = np(1 − p)

We	write	binomially	distributed	r.v.'s as	𝑋~𝐵(𝑛, 𝑝)



Example:	Playing	with	a	binomial	rv
Each	child	born	to	a	particular	set	of	parents	has	a	25%	probability	of	
having	blood	type	O.		Assume	the	parents	had	five	children.

Here,	n	=	5	and	p	=	0.25,	meaning	we	define	Type	O	as	"success",	and	
not	Type	O	as	"failure".	à X~B(5,	0.25)

Tasks:
◦ Compute	expectation	and	variance
◦ Visualize	PMF
◦ Visualize	CDF
◦ Make	some	calculations…



Expectation	and	variance
Each	child	born	to	a	particular	set	of	parents	has	a	25%	
probability	of	having	blood	type	O.		Assume	the	parents	had	
five	children.	B(5,	0.25)

	𝔼 𝑋 = 	𝜇 = np =	5*0.25	=	1.25

	𝑉𝑎𝑟 𝑋 = 𝜎7 = npq = np(1 − p) =	5*0.25*0.75	=	0.9375



Visualize	the	PMF
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?distributions
Distributions in the stats package

Description:
Density, cumulative distribution function, quantile function and
random variate generation for many standard probability
distributions are available in the ‘stats’ package.

Details:
The functions for the density/mass function, cumulative
distribution function, quantile function and random variate
generation are named in the form ‘dxxx’, ‘pxxx’, ‘qxxx’ and ‘rxxx’
respectively.

For the beta distribution see ‘dbeta’.

For the binomial (including Bernoulli) distribution see ‘dbinom’.

For the Cauchy distribution see ‘dcauchy’.

For the chi-squared distribution see ‘dchisq’.



Distribution	functions,	generally
Function Purpose Binomial	version

dxxx() Probability	distribution dbinom(x, size, prob)

pxxx() CDF pbinom(q, size, prob)
rxxx() Generate	random	

numbers	from	given	
distribution

rbinom(n, size, prob)

qxxx() Quantile:	Inverse of	
pxxx()

qbinom(p, size, prob)



Binomial	distribution	functions
Binomial function	 Example Output

dbinom(x, size, prob) dbinom(2, 5, 0.25) Prob of	obtaining	2	successes	in	5	
trials,	where	p=0.25	à 0.263

pbinom(q, size, prob) pbinom(2, 5, 0.25) Prob of	obtaining	≤2	successes	in	5	
trials,	where	p=0.25	à 0.896

rbinom(n, size, prob) rbinom(100, 5, 0.25) Generate	100	k	values	from	this	
binomial	dist.	à 100	from	{0,1,2,3,4}

qbinom(p, size, prob) qbinom(0.896, 5, 0.25) Smallest	value	x	where	F(x)	>=	p*	à 2
*not	prob success,	just	a	prob



Making	the	PMF
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> ## Use dbinom() to get the PMF values
> p = 0.25
> n = 5
> k0 <- dbinom(0, 5, 0.25) ## Prob of 0 successes, aka no children are Type O
> k1 <- dbinom(1, 5, 0.25) ## Prob of 1 success, aka only 1 child is Type O

> ## Advanced:
> library(purrr)
> map_dbl(0:5, dbinom, 5, 0.25)

[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 0.0146484375
[6] 0.0009765625



Making	the	PMF
## data frame (tibble) of probabilities for PMF
> data.pmf <- tibble(k = 0:5, prob = c(0.236623, 0.396, 0.264, 0.0879, 0.0145, 
0.000977))
> data.pmf

# A tibble: 6 x 2
k prob

<int> <dbl>
1 0 0.236623
2 1 0.396000
3 2 0.264000
4 3 0.087900
5 4 0.014500
6 5 0.000977

## Equivalent
> data.pmf <- tibble(k = 0:5, prob = map_dbl(0:5, dbinom, 5, 0.25))



Making	the	PMF	uses	a	different	*stat*
> ggplot(data.pmf, aes(x = k, y=prob))+ geom_bar( stat="identity" ) + 

xlab("Number of kids") + ylab("Probability Type O") 
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Tweaking	the	x-axis
> ggplot(data.pmf, aes(x = k, y=prob))+ geom_bar( stat="identity" ) + 

ylab("Probability Type O") + 
scale_x_continuous(name = "Number of kids", breaks = 0:5)
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Adding	some	text
> ggplot(data.pmf, aes(x = k, y=prob))+ geom_bar( stat="identity" ) + 

ylab("Probability Type O") + 
scale_x_continuous(name = "Number of kids", breaks = 0:5) +
geom_text(aes(x = k, y= prob + 0.01, label = prob))
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Visualize	the	CDF
> binom.sample <- tibble(x = rbinom(1000, 5, 0.25))
> ggplot(binom.sample, aes(x=x)) + stat_ecdf() + 

xlab("# Type O kids") + ylab("Cumulative probability")
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Solving	for	probabilities
Each	child	born	to	a	particular	set	of	parents	has	a	25%	probability	of	having	
blood	type	O.		Assume	the	parents	had	five	children.	B(5,	0.25)

What	is	the	probability	that	exactly	2	children	were	Type	O?
> dbinom(2, 5, 0.25) 

[1] 0.2636719
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Solving	for	probabilities
Each	child	born	to	a	particular	set	of	parents	has	a	25%	probability	of	having	
blood	type	O.		Assume	the	parents	had	five	children.	B(5,	0.25)

What	is	the	probability	that	exactly	2	children	were	Type	O?

	 					

𝑃 𝑋 = 2 	= I
7 0.25

70.75(I>7)

=	10	*	0.0625	*	0.422	=	0.26375

𝑃 𝑋 = 𝑘 = 	
𝑛
𝑘 𝑝=(1 − 𝑝)(<>=)=

𝑛
𝑘 𝑝=𝑞(<>=)
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Solving	for	probabilities
What	is	the	probability	that	2	or	fewer children	were	Type	O?

> pbinom(2, 5, 0.25) 
[1] 0.8964844
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Solving	for	probabilities
What	is	the	probability	that	2	or	fewer	children	were	Type	O?

> dbinom(0, 5, 0.25) +       
dbinom(1, 5, 0.25) + 
dbinom(2, 5, 0.25)  

[1] 0.8964844
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Solving	for	probabilities
What	is	the	probability	that	more	than	2	children	(ie either	3,	4,	
or	5)	were	Type	O?

> 1 - pbinom(2, 5, 0.25) 
[1] 0.1035156
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Solving	for	probabilities
What	is	the	probability	that	more	than	2	children	(ie either	3,	4,	
or	5)	were	Type	O?

> dbinom(3, 5, 0.25) +       
dbinom(4, 5, 0.25) + 
dbinom(5, 5, 0.25)  

[1] 0.1035156
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BREATHE



Expressing	continuous	random	variables
Probability	density	function	(PDF)	
◦ Describes	the	values	taken	by	a	continuous	r.v.	X and	its	associated	
probabilities	

◦ Function	such	that	the	area under	the	curve	between	any	two	points	a,	b	
corresponds	to	the	probability	that	the	r.v.	falls	between	a,	b

◦à 𝑃 𝑎	 ≤ 𝑋	 ≤ 𝑏 = 	∫ 𝑓 𝑥 𝑑𝑥Q
R
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PDF	properties
Continuous	r.v.'s are	infinitely	precise:	𝑃 𝑋 = 𝑥) = 𝑃(𝑥	 ≤ 𝑋	 ≤ 𝑥 = 0
◦ Exactly	unlike	PMFs

Total	area	under	the	PDF	equals	1:			 ∫ 𝑓 𝑥 𝑑𝑥 = 1T
>T

Probabilities	aren't	negative:			𝑓 𝑥 ≥ 0



Expressing	continuous	random	variables
Cumulative	distribution	function	(CDF)
◦ Function	defined,	for	a	specific	value	x of	a	continuous	r.v.	X,	as	F(x) = P(X ≤ x)
◦ (mostly)	the	same	as	for	discrete
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Relationship	between	PDF	and	CDF



Jumping	right	in:	Normal	distribution
The	PDF	(probability	distribution)	for	a	normally-distributed	
random	variable:

	𝑓 𝑥 = 	 V
7WXY� 𝑒𝑥𝑝 >([>\)Y

7XY

We	write	normally	distributed	r.v.'s as	𝑋~𝑁(𝜇, 𝜎7)

It's	gross,	everyone	knows	it,	and	
you	will	be	neither	plugging	nor	
chugging	with	this	equation



PDF	of	normal	distribution
Example,	let's	say	women's	heights	(cm)	are	normally	
distributed	according	to	𝑁(165, 64)
◦ Pop	quiz:	what	is	the	standard	deviation	of	this	distribution?
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Wikipedia	weighs	in



Making	the	PDF
Another	"interesting"	hack:	
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𝑁(165, 64)

> plot.range <- tibble(x = c(165 - 32, 165 + 32)) 
> ggplot(plot.range, aes(x=x)) + 

stat_function(fun = dnorm,  args=list(mean=164, sd=8))



Making	the	CDF
> data.cdf <- tibble(x = rnorm(10000, 164, 8))
> ggplot(data.cdf, aes(x=x)) + stat_ecdf()
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Expectation	and	variance
Any	guesses?

It's	in	the	definition:	𝑋~𝑁(𝜇, 𝜎7)



Types	of	questions	one	can	ask:
◦ What	is	the	probability	that	a	randomly-chosen	woman	is	taller	than	158	cm?
◦ What	is	the	probability	that	a	randomly-chosen	woman	is	between	163—170	
cm	tall?

◦ What	is	the	probability	that	a	randomly-chosen	woman	is	shorter	than	167	
cm?

◦ What	is	the	probability	that	a	randomly-chosen	woman	is	168	cm	tall?

Working	with	the	normal	distribution



Types	of	questions	one	can	ask:
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cm	tall?
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Properties	of	the	normal	distribution
Symmetric	around	the	mean

Mean	=	median	=	mode

Inflection	
points



Introducing	the	standard	normal:	𝑋~𝑁(0,1)
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Standard	Normal	𝑋~𝑁(0,1)

The cumulative-distribution function (cdf) for a standard normal distribution 
is denoted by

  ( ) ( )x X xPr

where X follows an N(0,1) distribution. This function is shown in Figure 5.10.

The symbol  is used as shorthand for the phrase “is distributed as.” Thus X ~ N(0,1) 
means that the random variable X is distributed as an N(0,1) distribution.

Column A in Table 3 of the Appendix presents (x) for various positive values of x  
for a standard normal distribution. This cumulative distribution function is illus-
trated in Figure 5.11. Notice that the area to the left of 0 is .5. 
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PDF	and	CDF	of	𝑋~𝑁(0,1)

Furthermore, the area to the left of x approaches 0 as x becomes small and ap-
proaches 1 as x becomes large.

The right-hand tail of the standard normal distribution  Pr(X  x) is given in 
column B of Appendix Table 3.

If X ~ N(0,1), then find Pr(X  1.96) and Pr(X  1).

From the Appendix, Table 3, column A,

(1.96)   .975 and (1)  .8413

   
From the symmetry properties of the standard normal distribution,

  ( ) ( ) ( ) ( ) ( )x X x X x X x xPr Pr Pr1 1

This symmetry property is depicted in Figure 5.12 for x  1.

0.4

0.3

0.2

0.1

0.0
x0

Pr(X  x) = (x) =
area to the left of x

f(x)

(x
)

x
–3 –2 –1 0

.0013

1 2 3

1.0

0.5

0.0
.023

.16

.50

.84

.977 .9987

CHE-ROSNER-10-0205-005.indd   116 7/15/10   7:50:49 PM

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Furthermore, the area to the left of x approaches 0 as x becomes small and ap-
proaches 1 as x becomes large.

The right-hand tail of the standard normal distribution  Pr(X  x) is given in 
column B of Appendix Table 3.

If X ~ N(0,1), then find Pr(X  1.96) and Pr(X  1).

From the Appendix, Table 3, column A,

(1.96)   .975 and (1)  .8413

   
From the symmetry properties of the standard normal distribution,

  ( ) ( ) ( ) ( ) ( )x X x X x X x xPr Pr Pr1 1

This symmetry property is depicted in Figure 5.12 for x  1.

0.4

0.3

0.2

0.1

0.0
x0

Pr(X  x) = (x) =
area to the left of x

f(x)

(x
)

x
–3 –2 –1 0

.0013

1 2 3

1.0

0.5

0.0
.023

.16

.50

.84

.977 .9987

CHE-ROSNER-10-0205-005.indd   116 7/15/10   7:50:49 PM

Copyright 2010 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

If	the	shaded	grey	area	=	0.977,	what	is	x?



Standard	Normal	𝑋~𝑁(0,1)
Due	to	symmetry,	P(X	≤	-x)	=	1	- P(X	≤ x)	

Calculate Pr(X  1.96) if X ~ N(0,1).

Pr(X  1.96)  Pr(X  1.96)  .0250 from column B of Table 3.

Furthermore, for any numbers a, b we have Pr(a  X  b)  Pr(X  b)  Pr(X  a) 
and thus we can evaluate Pr(a  X  b) for any a, b from Table 3.

Compute Pr( 1  X  1.5) if X ~ N(0,1).

  Pr( 1  X  1.5)  Pr(X  1.5)  Pr(X  1)

 Pr(X  1.5)  Pr(X  1)  .9332  .1587

 .7745

 Forced vital capacity (FVC), a standard measure of pulmonary 
function, is the volume of air a person can expel in 6 seconds. Current research 
looks at potential risk factors, such as cigarette smoking, air pollution, indoor al-
lergies, or the type of stove used in the home, that may affect FVC in grade-school 
children. One problem is that age, sex, and height affect pulmonary function, and 
these variables must be corrected for before considering other risk factors. One way 
to make these adjustments for a particular child is to find the mean  and standard 
deviation  for children of the same age (in 1-year age groups), sex, and height (in 
2-in. height groups) from large national surveys and compute a standardized FVC, 
which is defined as ( )X , where X is the original FVC. The standardized FVC 
then approximately follows an N(0,1) distribution, if the distribution of the original 
FVC values was bell-shaped. Suppose a child is considered in poor pulmonary health 
if his or her standardized FVC  1.5. What percentage of children are in poor pul-
monary health?

Pr(X  1.5)  Pr(X  1.5)  .0668

Thus about 7% of children are in poor pulmonary health.
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For	𝑋~𝑁(0,1),	what	is	the	probability	P(X	≤	0.47)?	
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0.47

# CDF: P(X <= 0.47)
> pnorm(0.47)

[1]  0.6808225



Normal	distribution	functions

Normal	function	 Meaning

dnorm(x) Density at	X=x

pnorm(q) P(X	<= x)

rnorm(n) Generate n	random	draws	from	
N(0,1)

qnorm(p) Obtain	x	from	given	CDF	area:	
qnorm(0.6808225) = 0.47

0.0

0.1

0.2

0.3

0.4

−5 −4 −3 −2 −1 0 1 2 3 4 5
Z

Pr
ob
ab
ilit
y

0.47



For	𝑋~𝑁(0,1),	what	is	the	probability	
P(-1.32	≤	x	≤	0.47)?	
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For	𝑋~𝑁(0,1),	what	is	the	probability	
P(-1.32	≤	x	≤	0.47)?	
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0.47-1.32

# P(X <= 0.47)
> pnorm(0.47)

[1]  0.6808225
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= -

# P(X <= -1.32)
> pnorm(-1.32)

[1] 0.09341751
0.587405



For	𝑋~𝑁(0,1),	what	is	the	probability	
P(-1≤	x	≤	1)?	
AKA	probability	of	being	within	1	standard	deviation	of	
mean?	

~0.68



For	𝑋~𝑁(0,1),	what	is	the	probability	
P(x	≥ 2.14)?	

## Two approaches:

> 1 - pnorm(2.14)
[1] 0.01617738

> pnorm(-2.14)
[1] 0.01617738
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For	𝑋~𝑁(0,1),	the	top	8%	of	the	
distribution	falls	above	what	number?	
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Area=0.08

???

> qnorm(1 - 0.08)
[1] 1.405072

> -1 * qnorm(0.08)
[1] 1.405072



Historical	consideration	of	z-scores



Re-scaling	to	standard	normal	to	
compare	distributions
	𝑍 = 	 [>\

X
◦x	=	distribution	value	of	interest	("raw	score")
◦𝜇,	𝜎 =	r.v./population	mean,	standard	deviation



Example:	Weight	for	a	population	of	rabbits	
follows	a	normal	distribution	𝑁(2.6, 1.1)

What	is	the	Z-score	for	a	3	pound	rabbit?

	𝑍 = 	 [>\
X

=	a>7.b
V.V� =	0.381

What	is	probability	a	rabbit	weighs	less	than	3	pounds?
pnorm(0.381) = 0.648

Does	is	make	sense	that	this	number	is	positive?

pnorm(3, 2.6, sqrt(1.1)) = 0.648 THE	FUTURE	IS	NOW



Normal	distributions	functions,	revisited
All	functions	assume	standard	normal.	Provide	additional	
arguments	for	other	normals:

Standard	normal Any	normal
pnorm(q) = pnorm(q, 0, 1) pnorm(q, mean, sd)



Z-scores	are	most	useful	for	comparing	
different	distributions
Weight	for	rabbit	pop	A	is	distributed	𝑁(2.6, 1.1)

Weight	for	rabbit	pop	B	is	distributed	𝑁(2.9, 0.17)

Which	of	these	two	rabbits	is	bigger?	Pop	A	rabbit	weighting	2.95	
lbs,	or	pop	B	rabbit	weighing	3.1	lbs?

Population	A:			𝑍 = 	 [>\
X
= 7.dI>7.b

V.V� = 0.334

Population	B:			𝑍 = 	 [>\
X
= a.V>7.d

f.Vg� = 0.485



Putting	it	all	together
The	height	of	European	men	is	distributed	as	𝑁 175, 53.3

The	height	of	European	women	is	distributed	as	𝑁(162.5, 34.8)

What	proportion	of	men	is	shorter	than	150	cm,	aka	P(man	<	150)?
Using	Z-scores

𝑍 = 	 [>\
X
= VIf>VgI

Ia.a� = -3.424

> pnorm(-3.424)
[1] 0.0003085331

Skipping	Z-scores

> pnorm(150, 175, sqrt(53.3))
[1] 0.0003081516 



Putting	it	all	together
What	proportion	of	women	is	taller	than	162.5	cm?

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

50%



Putting	it	all	together
What	proportion	of	women	is	taller	than	170	cm?

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

Using	Z-scores

𝑍 = 	 [>\
X
= Vgf>Vb7.I

ai.j� = 1.2713

> 1 - pnorm(1.2713)
[1] 0.101811

Skipping	Z-scores

> 1 - pnorm(170, 162.5, 
sqrt(34.8))
[1] 0.1017987



Putting	it	all	together
What	is	the	tallest	a	woman	can	be	and	still	be	in	the	bottom	22%?

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

Using	Z-scores

> qnorm(0.22)
[1] -0.7721932

𝑍 = 	 [>\
X
	 à x = 𝑍𝜎 + 𝜇

= −0.7722 ∗ 34.8� + 162.5
= 𝟏𝟓𝟕. 𝟗	𝒄𝒎

Skipping	Z-scores

> qnorm(0.22, 162.5, sqrt(34.8))
[1] 157.9447 



Putting	it	all	together
What	is	the	shortest a	woman	can	be	and	still	be	in	the	top 22%?

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

Using	Z-scores

> -1 * qnorm(0.22)
[1] 0.7721932

𝑍 = 	 [>\
X
	 à x = 𝑍𝜎 + 𝜇

= 0.7722 ∗ 34.8� + 162.5
= 𝟏𝟔𝟕. 𝟎𝟓	𝒄𝒎

Skipping	Z-scores

> qnorm(1-0.22, 162.5, sqrt(34.8))
[1] 167.0553



Putting	it	all	together
What	is	the	probability	a	randomly	chosen	man	is	between	175–182	cm	tall?

à P(X<182)	– P(X<175)	=	P(X<182)	– 0.5	

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

> pnorm(182, 175, sqrt(53.3)) – 0.5
[1] 0.3311738



Putting	it	all	together
What	is	the	probability	a	randomly	chosen	man	is	either	between	175–182	
cm	tall	or between	150—160	cm	tall?

à P(175	<	X	<	182)	+	P(150	<	X	<	160)

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

### First probability
> pnorm(182, 175, sqrt(53.3)) – 0.5
[1] 0.3311738

> ### Second prob.
> pnorm(160, 175, sqrt(53.3)) – pnorm(150, 175, sqrt(53.3))
[1] 0.01965059 

> 0.3311738 + 0.01965059
[1] 0.3508244

 



Putting	it	all	together
I	have	two	randomly-chosen	European	friends,	one	man	and	one	woman	each.	
What	is	the	probability	the	man	is	at	least	180	cm	and	the	woman	is	between	
163—170	cm?	

à P(man	>	180)	x	P(163	<	woman	<	170)

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

### First probability
> 1 - pnorm(180, 175, sqrt(53.3))

[1] 0.2467138

> ### Second prob.
> pnorm(170, 162.5, sqrt(34.8)) – pnorm(163, 162.5, sqrt(34.8))

[1] 0.3644282 

> 0.246713*0.3644282
[1] 0.08990917

 



Putting	it	all	together
I	have	two	new	randomly-chosen	European	friends,	one	man	and	one	woman	each.	
What	is	the	probability	the	man	is	180	cm	and	the	woman	is	163	cm?	

à P(man	=	180)	x	P(woman	=	163)	

à 0

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)



Putting	it	all	together
Assume	50.8%	of	Europeans	are	women.	If	a	randomly-chosen	person	is	shorter	
than	155	cm	tall,	what	is	the	probability	the	person	is	a	woman?

à P(woman	|	<	155)	=

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

### P(<155 | woman)
> pnorm(155, 162.5, sqrt(34.8))

[1] 0.1017987
 

P(<155	|	woman)	*	P(woman)	/	P(<155)

0.102 0.508



Solving	the	denominator
P(<155)	=	P(<155	and	man)	+	P(<155	and	woman)	=

P(<155|man)*P(man)	+	P(<155|woman)*P(woman)	

### P(<155 | man) 
> pnorm(155, 175, sqrt(53.3))

[1] 0.003076926
 

0.0031 0.492 0.102 0.508

=	0.0533



Putting	it	all	together
Assume	50.8%	of	Europeans	are	women.	If	a	randomly-chosen	person	is	shorter	
than	155	cm,	what	is	the	probability	the	person	is	a	woman?

à P(woman	|	<	155)	=

Men:							𝑁 175, 53.3
Women:	𝑁(162.5, 34.8)

P(<155	|	woman)	*	P(woman)	/	P(<155)

0.102 0.508 0.533

=	0.972	



BREAK



Statistical	inference
Population Sample

Random sampling

Statistical inference
Population 
parameters 
!, "

Sample 
estimates 
x, s



Two	main	flavors	of	statistical	inference
Estimation
◦ Estimate	a	population	parameter	from	sample	data
◦ Point	estimates:	What	is	the	population	mean?
◦ Interval	estimates:	In	what	range	of	values	is	the	population	mean	likely	to	fall?

Hypothesis	testing
◦ Test	whether	the	value	of	a	population	parameter	is	equal	to	some	specific	value
◦ Is	there	evidence	that	my	sample	differs	from	some	underlying	population?



The	sampling	distribution
The	probability	distribution	of	values	for	an	estimate	that	
we	obtain	under	sampling



Obtaining	a	sampling	distribution
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> genes <- read.csv("genes.csv")
> head(genes)

nucleotides
1 3785
2 7416
3 2135
4 7682
5 5766
6 11079

> mean(genes$nucleotides)
[1] 2761.039 
> sd(genes$nucleotides)
[1] 2037.645

> ggplot(genes, aes(x=nucleotides)) +    
geom_histogram(fill="white", color="black")



Obtaining	a	sampling	distribution
### the function sample_n draws a random sample of rows

> small.sample <- genes %>% sample_n(25) 
> mean(small.sample$nucleotides)

[1] 2151.8

> ggplot(small.sample , aes(x = nucleotides)) + 
geom_histogram() +
geom_vline(xintercept=2151.8, color="blue") + 
geom_vline(xintercept= 2761.039, color="red") 
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geom_vline(xintercept=…)
geom_hline(yintercept=…)
geom_abline(yintercept=…, slope=…)

The	sample	mean	for	a	random	sample	of	
N=25	is	𝒙w = 𝟐𝟏𝟓𝟏. 𝟖



Obtaining	a	sampling	distribution
Now	imagine	we	draw	20	samples	of	N=25	and	compute	
each	of	their	means:
> head(n20.means)
sample.mean

1 2584.84
2 2574.12
3 2382.64
4 3143.68
5 2252.56
6 2368.44

Sampling	distribution	of	the	mean
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Quantifying	the	sampling	distribution
The	standard	error is	the	standard	deviation	of	the	estimate	
of	the	sampling	distribution
◦ Standard	error	of	the	mean:				𝑆𝐸[̅ = 	

X
<�
,		approximate	with	 }

<�

◦ SE	is	not	the	standard	deviation	of	a	sample
◦ Here,	n	represents	the	number	of	samples (not the	sample	size)

It	also	quantifies	the	precision	of	our	estimate,	i.e.	how	far	
from	the	population	parameter	we	are	



Computing	the	standard	error	of	the	
mean

> head(n20.means)
sample.mean

1 2584.84
2 2574.12
3 2382.64
4 3143.68
5 2252.56
6 2368.44

> sd(n20.means$sample.mean) / sqrt(20)
[1] 93.11888
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Sampling	distribution	of	the	mean



Several	sampling	distributions	
comprised	of	N	samples,	each	of	n=25
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Standard	error	decreases	as	N	increases
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N=20 N=50 N=100 N=1000 N=10000

SE	=	93.1 SE	=	58.1 SE	=	37.9 SE	=	13.3 SE	=	4.02
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Therefore,	mean	of	sampling	distribution	
approaches	population	mean 2761.039
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𝒙w	=	2780.89 𝒙w	=	2753.91 𝒙w	=	2781.51 𝒙w	=	2777.02 𝒙w	=	2763.82
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The	Central	Limit	Theorem
As	sample	size	increases,	the	sampling	distribution	of	the	
mean will	be	approximately	normal	regardless	of	true	
population	distribution
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Next	week..
Introduction	to	hypothesis	testing	and	comparing	means

More	fun	facts	on	estimation	will	come	later	in	the	semester,	
to	be	bundled	with	*likelihood*


