GRABBAG!

STEPHANIE J SPIELMAN, PHD BIO5312, FALL 2017

• Pattern-based search and replace

 Extremely powerful beyond all reason

 Excellent for text (file) manipulation!

CRITICAL PSA: TEXT EDITORS

- Microsoft Word is not a text editor!!!!!!! I'm so serious!!!
- GUI
 - TextEdit and Notepad
 - Textwrangler/BBEdit for Macs
 - Sublime 3 for everyone else
 - Newer, awesome one called Atom
- CLI
 - Vim/vi, emacs, nano, pico (b/c puns)
 - <u>https://en.wikipedia.org/wiki/Editor_war</u>

String: Mus musculus

Regex: Mus

String: Mus musculus

Regex: Mus musculus

String: Mus musculus

Regex: [mM]us

String: Mus musculus

Regex: [A-Za-z]us

String: Mus musculus

Regex: \wus

String: Mus musculus

Regex: \w+

String: Mus musculus

Regex: [A-Z]\w+ \w+

- String: Mus musculus
- Regex: ([A-Z])\w+ (\w+)
- Replace: 1. 2
- New string: M. musculus

String: 85.34 cm

Regex: \d+

Match: 85.34 cm

String: 85.34 cm

Regex: $d+\.d+$

Match: 85.34 cm

String: 85.34 cm

Regex: $d+\.\d+\.\w+$

Match: 85.34 cm

String: 85 cm

Regex: $d+\.\d+\.\w+$

String: 85 cm

Regex: $d+\.*\d* w+$

String: 85 cm

Regex: ^\d

String: 85 cm

Regex: \w\$

String: 85.341234 cm

Regex: $(d+).d{3})d+ cm$

Replace: $\1$

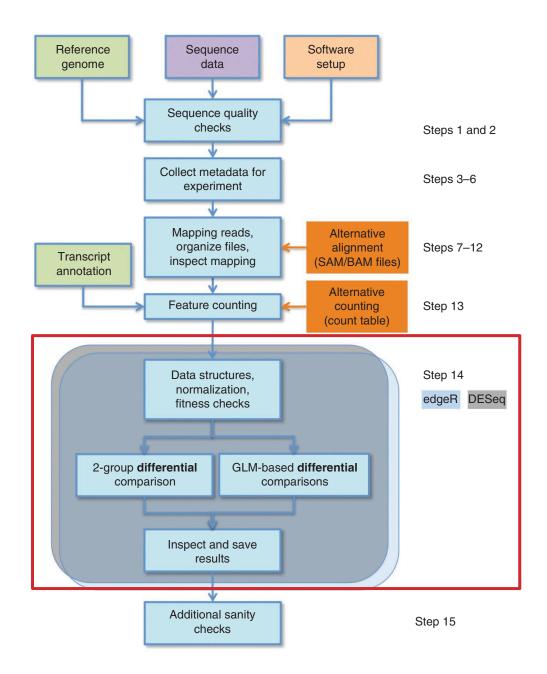
New string: 85.341

String: 85.34 cm

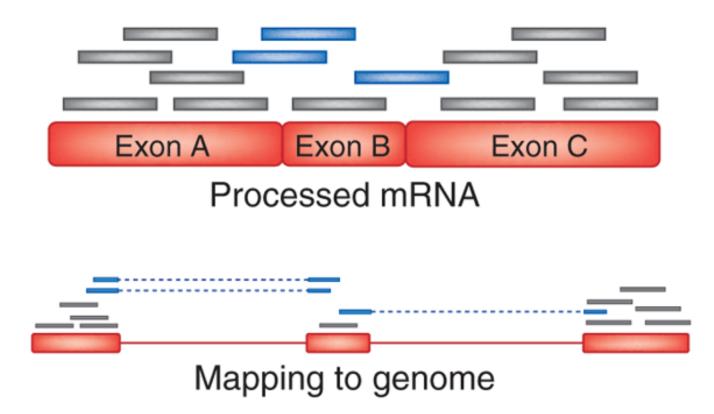
Regex: $(d+).d{3})d+ cm$

Replace: \1

New string: ?????


GROUP EXERCISE

Come up with a regular expression to convert the following text:


85.34 cm
85.678 cm
923.1115 cm
1.95 cm
6 cm

85.3 cm
85.6 cm
923.1 cm
1.9 cm
6 cm

USE A SPLICE-AWARE ALIGNER

https://genomebiology.biomedcentral.com/articles/10.1186/s13059 -016-0881-8

ALIGNERS AND PSEUDO-

PROTOCOL

Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

Mihaela Pertea^{1,2}, Daehwan Kim¹, Geo M Pertea¹, Jeffrey T Leek³ & Steven L Salzberg^{1–4}

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin^{1,*}, Carrie A. Davis¹, Felix Schlesinger¹, Jorg Drenkow¹, Chris Zaleski¹, Sonali Jha¹, Philippe Batut¹, Mark Chaisson² and Thomas R. Gingeras¹ ¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and ²Pacific Biosciences, Menlo Park, CA, USA Associate Editor: Inanc Birol

Near-optimal probabilistic RNA-seq quantification

Nicolas L Bray¹, Harold Pimentel², Páll Melsted³ & Lior Pachter^{2,4,5}

We present kallisto, an RNA-seq quantification program that is two orders of magnitude faster than previous approaches and achieves similar accuracy. Kallisto pseudoaligns reads to a reference, producing a list of transcripts that are compatible with each read while avoiding alignment of individual bases. We use kallisto to analyze 30 million unaligned paired-end RNA-seq reads in <10 min on a standard laptop computer. This removes a major computational bottleneck in RNA-seq analysis. THIS IS THE NEW TOPHAT2