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REGULAR EXPRESSIONS 

• Pattern-based search and replace

• Extremely powerful beyond all 
reason

• Excellent for text (file) 
manipulation!



CRITICAL PSA: TEXT EDITORS
• Microsoft Word is not a text editor!!!!!!! I’m 

so serious!!!
• GUI

• TextEdit and Notepad
• Textwrangler/BBEdit for Macs
• Sublime 3 for everyone else
• Newer, awesome one called Atom

• CLI
• Vim/vi, emacs, nano, pico (b/c puns)
• https://en.wikipedia.org/wiki/Editor_war



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  Mus

Match:  Mus musculus



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  Mus musculus

Match:  Mus musculus



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  [mM]us

Match:  Mus musculus



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  [A-Za-z]us

Match:  Mus musculus



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  \wus

Match:  Mus musculus



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  \w+

Match:  Mus musculus



REGULAR EXPRESSIONS
String: Mus musculus

Regex:  [A-Z]\w+ \w+

Match:  Mus musculus



REGULAR EXPRESSIONS
String:  Mus musculus

Regex:   ([A-Z])\w+ (\w+)

Replace: \1. \2

New string:  M. musculus



REGULAR EXPRESSIONS
String: 85.34 cm

Regex:  \d+

Match:  85.34 cm



REGULAR EXPRESSIONS
String: 85.34 cm

Regex:  \d+\.\d+

Match:  85.34 cm



REGULAR EXPRESSIONS
String: 85.34 cm

Regex:  \d+\.\d+ \w+

Match:  85.34 cm



REGULAR EXPRESSIONS
String: 85 cm

Regex:  \d+\.\d+ \w+

Match:  85 cm



REGULAR EXPRESSIONS
String: 85 cm

Regex:  \d+\.*\d* \w+

Match:  85 cm



REGULAR EXPRESSIONS
String: 85 cm

Regex:  ^\d

Match:  85 cm



REGULAR EXPRESSIONS
String: 85 cm

Regex:  \w$

Match:  85 cm



REGULAR EXPRESSIONS
String: 85.341234 cm

Regex:  (\d+\.\d{3})\d+ cm

Replace: \1

New string: 85.341



REGULAR EXPRESSIONS
String: 85.34 cm

Regex:  (\d+\.\d{3})\d+ cm

Replace: \1

New string: ?????



GROUP EXERCISE
Come up with a regular expression to convert the following 
text:

85.34 cm 85.3 cm
85.678 cm               85.6 cm
923.1115 cm             923.1 cm
1.95 cm                 1.9 cm
6 cm                    6 cm



BREAK
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make formal distributional assumptions about the data observed. 
The advantage of parametric assumptions is the ability, through 
the wealth of existing statistical methodology, to make infer-
ences about parameters of interest (i.e., changes in expression). 
For genome-scale count data, including RNA-seq, a convenient 
and well-established approximation is the negative binomial 
(NB) model (Box 1), which represents a natural extension of the 
Poisson model (i.e., a mixture of gamma-distributed rates) that 
was used in early studies18; notably, Poisson variation can only 
describe technical (i.e., sampling) variation.

To analyze differential expression, this protocol focuses on 
DESeq and edgeR, which implement general differential analy-
ses on the basis of the NB model. These tools differ in their look 
and feel, and they estimate the dispersions differently but offer 
overlapping functionality (Box 2).

Variations and extensions of the protocol
This protocol presents a workflow built from a particular set of 
tools, but it is modular and extensible; thus, alternatives that offer 
special features (e.g., counting by allele) or additional flexibility 
(e.g., specialized mapping strategy) can be inserted as necessary. 
Figure 1 highlights straightforward alternative entry points to 
the protocol (orange boxes). The count-based pipeline discussed 
here can be used in concert with other tools. For example, for 
species without an available well-annotated genome reference, 
Trinity19 or other assembly tools can be used to build a reference 
transcriptome; reads can then be aligned and counted, followed 
by the standard pipeline for differential analysis20. Similarly, to 
perform differential analysis on novel genes in otherwise anno-
tated genomes, the protocol could be expanded to include merged 
per-sample assemblies (e.g., Cuffmerge within the Cufflinks pack-
age17,21,22) and used as input to counting tools.

The focus of this protocol is gene-level differential expres-
sion analysis. However, biologists are often interested in analyses 

beyond that scope, and many possibilities now exist as extensions 
of the count-based framework discussed here. The full details of 
such analyses are not covered here, and we make only a sketch of 
some promising approaches. First, an obvious extension to gene-
level counting is exon-level counting, given a catalog of tran-
scripts. Reads can be assigned to the exons that they align to and 
be counted. Reads spanning exon-exon junctions can be counted 
at the junction level. The DEXSeq package uses a generalized lin-
ear model (GLM) that tests whether particular exons in a gene 
are preferentially used in a condition, over and above changes in 
gene-level expression. In edgeR, a similar strategy is taken, except 
that testing is done at the gene level by effectively asking whether 

 Box 1 | The NB model 
The NB model has been shown to be a good fit to RNA-seq data7, yet it is flexible enough to account for biological variability. It provides 
a powerful framework (e.g., via GLMs) for analyzing arbitrarily complex experimental designs. NB models, as applied to genomic count 
data, make the assumption that an observation, say Ygj (observed number of reads for gene g and sample j), has a mean Mgj and a  
variance Mgj  +  JgM2 , where the dispersion Jg  >  0 represents overdispersion relative to the Poisson distribution4. The mean  
parameters Mgj depend on the sequencing depth for sample j as well as on the amount of RNA from gene g in the sample. Statistical 
procedures can be formulated to test for changes in expression level between experimental conditions, possibly adjusting for batch 
effects or other covariates, and to estimate the log-fold changes in expression.

The dispersion Jg represents the squared coefficient of variation of the true expression levels between biologically independent RNA 
samples under the same experimental conditions, and hence the square root of Jg is called the biological coefficient of variation7.

Obtaining good estimates of each gene’s dispersion is critical for reliable statistical testing. Methods of estimating the genewise 
dispersion have received considerable attention3,4,31,59. Unless the number of samples is large, stable estimation of the dispersion 
requires some sort of sharing of information between genes. One can average the variability across all genes5, or fit a global trend to 
the dispersion3, or can seek a more general compromise between individual gene and global dispersion estimators4.

Sequence
data

Reference
genome

Sequence quality
checks

Collect metadata for
experiment

Mapping reads,
organize files,

inspect mapping

Feature counting

Data structures,
normalization,
fitness checks edgeR DESeq

Step 14

Step 15

Step 13

Steps 7–12

Steps 3–6

Steps 1 and 2

2-group differential
comparison

GLM-based differential
comparisons

Inspect and save
results

Additional sanity
checks

Alternative
alignment

(SAM/BAM files)

Alternative
counting

(count table)

Transcript
annotation

Software
setup

Figure 1 | Count-based differential expression pipeline for RNA-seq data 
using edgeR and/or DESeq. Many steps are common to both tools, whereas 
the specific commands are different (Step 14). Steps within the edgeR or 
DESeq differential analysis can follow two paths, depending on whether the 
experimental design is simple or complex. Alternative entry points to the 
protocol are shown in orange boxes.



USE A SPLICE-AWARE 
ALIGNER

https://genomebiology.biomedcentral.com/articles/10.1186/s13059
-016-0881-8



ALIGNERS AND PSEUDO-
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INTRODUCTION
RNA-seq experiments capture the total mRNA from a collection  
of cells and then sequence that RNA in order to determine which 
genes were active, or expressed, in those cells. Using high-throughput  
sequencing machines, a single experiment can capture the expres-
sion levels of thousands of genes at once with high accuracy1–3. 
These experiments generate enormous numbers of raw sequenc-
ing reads, typically numbering in the tens of millions, even for 
a modest-sized assay. The number of reads produced from  
each gene can be used as a measure of gene abundance, and with 
proper design RNA-seq can detect which genes are expressed  
at significantly different levels in two or more conditions. RNA-
seq data can easily detect genes and gene variants that are not 
included in standard annotation, including noncoding RNA 
genes. With the appropriate software, RNA-seq can also be used 
to discover conditions in which distinct isoforms of a single gene 
are differentially regulated and expressed.

RNA-seq experiments must be analyzed with accurate,  
efficient software that is carefully designed to handle the very 
large sequencing volumes generated by most experiments. The 
analysis pipeline can be conceptually divided into four main tasks: 
(i) alignment of the reads to the genome; (ii) assembly of the 
alignments into full-length transcripts; (iii) quantification of the 
expression levels of each gene and transcript; and (iv) calculation 
of the differences in expression for all genes among the differ-
ent experimental conditions. Some of us previously developed 
two software tools, TopHat2 (ref. 4) and Cufflinks5, that together 
could accomplish all four of these tasks, as described in an earlier 
protocol6. Recently, we have developed three new software tools 
that accomplish the same tasks while running much faster, using 
substantially less memory and providing more accurate overall 
results. HISAT7 aligns RNA-seq reads to a genome and discov-
ers transcript splice sites, while running far faster than TopHat2 
and requiring much less computer memory than other methods. 
StringTie8 assembles the alignments into full and partial tran-
scripts, creating multiple isoforms as necessary and estimating 

the expression levels of all genes and transcripts. Ballgown9 takes 
the transcripts and expression levels from StringTie and applies 
rigorous statistical methods to determine which transcripts 
are differentially expressed between two or more experiments.  
We describe here a protocol to use these tools for RNA-seq 
data analysis; Figure 1 shows the software used in this protocol  
and highlights the main steps performed by each tool. All the 
tools are fully documented on the web and actively maintained 
by the developers.

Overview of the protocol
RNA-seq experiments can be used to measure many phenom-
ena. For simplicity, the protocol described here is intended to 
resemble experiments that will correspond closely to many users’ 
designs. We consider an experiment that compares two biological 
conditions, such as case versus control, wild type versus mutant 
or disease versus normal comparisons. For each condition,  
we include six replicates, noting that three is the minimum 
number of replicates for valid statistical results. The software will 
support many other designs, including time-course experiments 
and comparisons among more than two conditions.

The example data used in this protocol comprise human RNA-
seq samples, although the protocol will work for any species  
with a sequenced genome, including mouse, rat, Drosophila, 
Arabidopsis, yeast and many others. (Some program parameters 
may require adjustment to optimize the results for genomes with 
smaller intron sizes.) The data files are very large, as is often the 
case for high-throughput RNA-seq experiments; thus, to make  
the protocol faster and simpler for novice users, we have extracted 
a subset of the reads mapping to human chromosome X, which 
is a relatively gene-rich chromosome that spans 151 megabases 
(Mb), ~5% of the genome. The protocol describes the end-to-end  
analysis of these reads, but it will work equally well with the  
full data set, for which it will require significantly more  
computing time.

Transcript-level expression analysis of RNA-seq 
experiments with HISAT, StringTie and Ballgown
Mihaela Pertea1,2, Daehwan Kim1, Geo M Pertea1, Jeffrey T Leek3 & Steven L Salzberg1–4

1Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 2Department of  
Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA. 3Department of Biostatistics, Bloomberg School of Public  
Health, Johns Hopkins University, Baltimore, Maryland, USA. 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.  
Correspondence should be addressed to S.L.S. (salzberg@jhu.edu).

Published online 11 August 2016; doi:10.1038/nprot.2016.095

High-throughput sequencing of mRNA (RNA-seq) has become the standard method for measuring and comparing the levels of  
gene expression in a wide variety of species and conditions. RNA-seq experiments generate very large, complex data sets that 
demand fast, accurate and flexible software to reduce the raw read data to comprehensible results. HISAT (hierarchical indexing  
for spliced alignment of transcripts), StringTie and Ballgown are free, open-source software tools for comprehensive analysis 
of RNA-seq experiments. Together, they allow scientists to align reads to a genome, assemble transcripts including novel splice 
variants, compute the abundance of these transcripts in each sample and compare experiments to identify differentially expressed 
genes and transcripts. This protocol describes all the steps necessary to process a large set of raw sequencing reads and create  
lists of gene transcripts, expression levels, and differentially expressed genes and transcripts. The protocol’s execution time 
depends on the computing resources, but it typically takes under 45 min of computer time. HISAT, StringTie and Ballgown are 
available from http://ccb.jhu.edu/software.shtml. 

THIS IS 
THE NEW 
TOPHAT2
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STAR: ultrafast universal RNA-seq aligner
Alexander Dobin1,*, Carrie A. Davis1, Felix Schlesinger1, Jorg Drenkow1, Chris Zaleski1,
Sonali Jha1, Philippe Batut1, Mark Chaisson2 and Thomas R. Gingeras1

1Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and 2Pacific Biosciences, Menlo Park, CA, USA
Associate Editor: Inanc Birol

ABSTRACT

Motivation: Accurate alignment of high-throughput RNA-seq data is a

challenging and yet unsolved problem because of the non-contiguous

transcript structure, relatively short read lengths and constantly

increasing throughput of the sequencing technologies. Currently avail-

able RNA-seq aligners suffer from high mapping error rates, low map-

ping speed, read length limitation and mapping biases.

Results: To align our large (480 billon reads) ENCODE Transcriptome

RNA-seq dataset, we developed the Spliced Transcripts Alignment to

a Reference (STAR) software based on a previously undescribed

RNA-seq alignment algorithm that uses sequential maximum map-

pable seed search in uncompressed suffix arrays followed by seed

clustering and stitching procedure. STAR outperforms other aligners

by a factor of450 in mapping speed, aligning to the human genome

550 million 2!76 bp paired-end reads per hour on a modest 12-core

server, while at the same time improving alignment sensitivity and

precision. In addition to unbiased de novo detection of canonical junc-

tions, STAR can discover non-canonical splices and chimeric (fusion)

transcripts, and is also capable of mapping full-length RNA se-

quences. Using Roche 454 sequencing of reverse transcription poly-

merase chain reaction amplicons, we experimentally validated 1960

novel intergenic splice junctions with an 80–90% success rate, corro-

borating the high precision of the STAR mapping strategy.

Availability and implementation: STAR is implemented as a standa-

lone Cþþ code. STAR is free open source software distributed under

GPLv3 license and can be downloaded from http://code.google.com/

p/rna-star/.

Contact: dobin@cshl.edu.

Received on May 29, 2012; revised on October 17, 2012; accepted on

October 19, 2012

1 INTRODUCTION

Although genomes are composed of linearly ordered sequences of
nucleic acids, eukaryotic cells generally reorganize the informa-
tion in the transcriptome by splicing together non-contiguous
exons to create mature transcripts (Hastings and Krainer, 2001).
The detection and characterization of these spliced RNAs have
been a critical focus of functional analyses of genomes in both the
normal and disease cell states. Recent advances in sequencing
technologies have made transcriptome analyses at the single nu-
cleotide level almost routine. However, hundreds of millions of
short (36nt) to medium (200nt) length sequences (reads) gener-
ated by such high-throughput sequencing experiments present

unique challenges to detection and characterization of spliced
transcripts. Two key tasks make these analyses computationally
intensive. The first task is an accurate alignment of reads that
contain mismatches, insertions and deletions caused by genomic
variations and sequencing errors. The second task involves map-
ping sequences derived from non-contiguous genomic regions
comprising spliced sequence modules that are joined together to
form spliced RNAs. Although the first task is shared with DNA
resequencing efforts, the second task is specific and crucial to the
RNA-seq, as it provides the connectivity information needed to
reconstruct the full extent of spliced RNAmolecules. These align-
ment challenges are further compounded by the presence of mul-
tiple copies of identical or related genomic sequences that are
themselves transcribed, making precise mapping difficult.
Various sequence alignment algorithms have been recently

developed to tackle these challenges (Au et al., 2010; De Bona,
et al., 2008; Grant et al., 2011; Han et al., 2011; Trapnell et al.,
2009; Wang et al., 2010; Wu and Nacu, 2010; Zhang et al., 2012).
However, application of these algorithms invokes compromises
in the areas of mapping accuracy (sensitivity and precision) and
computational resources (run time and disk space) (Grant et al.,
2011). With current advances in sequencing technologies, the
computational component is increasingly becoming a through-
put bottleneck. High mapping speed is especially important for
large consortia efforts, such as ENCODE (http://www.genome.
gov/encode/), which continuously generate large amounts of
sequencing data.
Furthermore, most of the cited algorithms were designed to

deal with relatively short reads (typically #200 bases), and are
ill-suited for aligning long read sequences generated by the emer-
ging third-generation sequencing technologies (Flusberg et al.,
2010; Rothberg et al., 2011). The longer read sequences, ideally
reaching full lengths of RNA molecules, have a great potential
for enhancing transcriptome studies by providing more complete
RNA connectivity information.
This report describes an alignment algorithm entitled ‘Spliced

Transcripts Alignment to a Reference (STAR)’, which was de-
signed to specifically address many of the challenges of RNA-seq
data mapping, and uses a novel strategy for spliced alignments.
We performed high-throughput validation experiments that cor-
roborated STAR’s precision for detection of novel splice junc-
tions. STAR’s high mapping speed and accuracy were crucial for
analyzing the large ENCODE transcriptome (Djebali et al.,
2012) dataset (480 billion Illumina reads). We also demonstrated
that STAR has a potential for accurately aligning long (several
kilobases) reads that are emerging from the third-generation
sequencing technologies.*To whom correspondence should be addressed.
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The first two steps in typical transcript-level RNA-seq processing 
workflows are alignment to a transcriptome or a reference genome and 
estimation of transcript abundances. These steps can be time consum-
ing. For example, aligning 20 samples, each with 30 million RNA-seq 
reads, using the widely used program TopHat2 (ref. 1) takes 28 core 
hours on 20 cores, while quantification with the companion program 
Cufflinks2 takes another 14 h. Such running times are likely to become 
prohibitive as sequence data from increasing numbers of samples are 
generated. Although the quantification of aligned reads can be sped 
up with streaming algorithms3 or by naive counting of reads4, these 
approaches have resulted in a decrease in quantification accuracy. To 
circumvent the alignment step, a recent study proposed quantifying 
samples by extraction of k-mers from reads followed by exact match-
ing of the k-mers using a hash table5. However, shredding reads into 
k-mers discards valuable information present in complete reads since 
each k-mer can align to more transcripts than the read itself. This 
results in a substantial loss of accuracy (Supplementary Fig. 1).

Although the direct use of k-mers is inadequate for accurate quan-
tification, the hash-based approach provides a basis for speeding up 
RNA-seq processing. Here we investigate whether information from 
k-mers within reads can be combined to maintain the accuracy of 
alignment-based quantification. We examine the central difficulty and 
key requirement for accurate quantification, which is the assignment  
of reads that cannot be uniquely aligned6. Typically, these multi- 
mapping reads are accounted for using a statistical model of RNA-seq6 
that probabilistically assigns such reads while inferring maximum 
likelihood estimates of transcript abundances. However, it has been 
shown that accurate quantification does not require information on 
where inside transcripts the reads may have originated from, but 
rather which transcripts could have generated them7. On the basis of 

Near-optimal probabilistic  
RNA-seq quantification

Nicolas L Bray1, Harold Pimentel2, Páll Melsted3  
& Lior Pachter2,4,5

We present kallisto, an RNA-seq quantification program that 
is two orders of magnitude faster than previous approaches 
and achieves similar accuracy. Kallisto pseudoaligns reads to 
a reference, producing a list of transcripts that are compatible 
with each read while avoiding alignment of individual bases. We 
use kallisto to analyze 30 million unaligned paired-end RNA-seq 
reads in <10 min on a standard laptop computer. This removes 
a major computational bottleneck in RNA-seq analysis. 

this information, we develop a method based on pseudoalignment of 
reads and fragments, which focuses only on identifying the transcripts 
from which the reads could have originated and does not try to pin-
point exactly how the sequences of the reads and transcripts align.

A pseudoalignment of a read to a set of transcripts, T, is a subset, 
S # T, without specific coordinates mapping each base in the read 
to specific positions in each of the transcripts in S. Accurate pseu-
doalignments of reads to a transcriptome can be obtained using fast 
hashing of k-mers together with the transcriptome de Bruijn graph 
(T-DBG). de Bruijn graphs have been crucial for DNA and RNA 
assembly8, where they are usually constructed from reads. Kallisto 
uses a T-DBG, which is a de Bruijn graph constructed from k-mers 
present in the transcriptome (Fig. 1a), and a path covering of the 
graph, a set of paths whose union covers all edges of the graph, where 
the paths correspond to transcripts (Fig. 1b). This path covering of 
a T-DBG induces multi-sets on the vertices, called k-compatibility 
classes. A compatibility class can be associated to an error-free read by 
representing it as a path in the graph and defining the k-compatibility 
class of a path in the graph as the intersection of the k-compatibility 
classes of its constituent k-mers (Fig. 1c). An equivalence class for 
a read is a multi-set of transcripts associated with the read; ideally 
it represents the transcripts a read could have originated from and 
provides a sufficient statistic for quantification. A key point is that the 
k-compatibility class of an error-free read coincides with the minimal 
equivalence class consisting of transcripts containing the read for 
large k (Online Methods).

Previously, the equivalence classes of reads have been determined 
via the time-consuming alignment of the reads to the transcriptome. 
However, since a hash of k-mers provides a fast way to determine their 
k-compatibility classes, the equivalence class of (error-free) reads can 
be efficiently determined by selecting suitably large k and then inter-
secting the reads’ constituent k-compatibility classes. The difficulty 
of implementing such an approach for RNA-seq lies in the fact that 
reads have errors. However, with very high probability, an error in a 
k-mer will result in it not appearing in the transcriptome, and such 
k-mers are simply ignored. The issue of errors is also ameliorated by a 
technique that we implemented to improve the efficiency of pseudoa-
lignment that removes redundant k-mers from the computation on 
the basis of information contained in the T-DBG (Online Methods). 
Because fewer k-mers are inspected, there is less opportunity for 
erroneous k-mers to produce misleading results. With pseudoalign-
ments efficiently computable, we explored the use of the expectation- 
maximization (EM) algorithm applied to equivalence classes for 
quantification5 (Online Methods). Although the likelihood func-
tion is simpler than some other models used for RNA-seq2,3,9, it still 
includes a model for bias, and its use has the advantage that the EM 
algorithm can be applied for many rounds very rapidly.


