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Exploratory	methods	for	high-
dimensional	data
Principal	components	analysis	(PCA)
◦ Note	there	are	many	similar	methods,	e.g.	linear	discriminant	analysis

Clustering	
◦ K-means
◦ Hierarchical
◦ Again,	manymore



Principal	components	analysis
Linear	algebra	technique	to	emphasize	axes	of	variation	in	the	
data

PCA	offers	new	coordinate	system	to	emphasize	variation	in	the	data



Do	it	yourself!
There	are	as	many	PCs	are	there	are	variables
◦ NUMERIC	ONLY

http://setosa.io/ev/principal-component-analysis/



Example:	Iris
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How	well	we	can	tell	species	apart	depends	on	plotting	strategy



PCA	on	iris
> iris %>%

select(-Species) %>%     ### Remove any non-numeric columns
scale() %>%              ### Scale the data (columns in same units)
prcomp() -> iris.pca     ### Run the PCA with prcomp()



PCA	output
## Rotation matrix: Loadings are the percent of variance explained by the variable
> iris.pca$rotation

PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971

Sepal.Length,	Petal.Length,	and	Petal.Width load	positively	on	PC1.
Sepal.Width shows	a	weaker	negative	loading	on	PC1.

PC2	is	dominated	by	Sepal.Width,	which	loads	strongly	and	negatively.



PCA	output

#### The actual principal components
> head(iris.pca$x)

PC1 PC2 PC3 PC4
[1,] -2.257141 -0.4784238 0.12727962 0.024087508
[2,] -2.074013 0.6718827 0.23382552 0.102662845
[3,] -2.356335 0.3407664 -0.04405390 0.028282305
[4,] -2.291707 0.5953999 -0.09098530 -0.065735340
[5,] -2.381863 -0.6446757 -0.01568565 -0.035802870
[6,] -2.068701 -1.4842053 -0.02687825 0.006586116



PCA	output

#### Standard deviation of components is represents the percent of variation each 
component explains, ish
> iris.pca$sdev
[1] 1.7083611 0.9560494 0.3830886 0.1439265

### Compute variance explained:
> (iris.pca$sdev)^2 / (sum(iris.pca$sdev^2))
[1] 0.729624454 0.228507618 0.036689219 0.005178709

PC1	explains	~73%	of	variance	in	the	data.	By	definition,	PC1	explains	the	most	variation	(and	so	on)
PC2	explains	~	23%	of	variance	in	the	data
etc.



Visualizing	the	PCA:	PC	vs	PC
#### Bring back the original data for plotting
> plot.pca <- cbind(iris, iris.pca$x)
> ggplot(plot.pca, aes(x = PC1, y = PC2, color = Species)) + geom_point()

−2

−1

0

1

2

−2 0 2
PC1

PC
2

Species
setosa

versicolor

virginica



Visualizing	the	PCA:	PC	vs	PC
#### Bring back the original data for plotting
> plot.pca <- cbind(iris, iris.pca$x)
> ggplot(plot.pca, aes(x = PC1, y = PC2, color = Species)) + geom_point() +    

stat_ellipse()
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Species	separate along	PC1
PC1	discriminates	species.

Species	spread	evenly	across	PC2.



PC1	vs	PC3?
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PC1	discriminates	species.

Setosa is	more	compact	along	PC3,	whereas	there	is	more	
spread	for	versicolor/virginica along	PC3.



Visualizing	the	PCA:	Loadings	
> as.data.frame(iris.pca$rotation) %>% rownames_to_column() -> loadings

rowname PC1 PC2 PC3 PC4
1 Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
2 Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
3 Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
4 Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971
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> ggplot(loadings) + 
geom_segment(x=0, y=0, aes(xend=PC1, yend=PC2)) + 
geom_text(aes(x=PC1, y=PC2, label=rowname), size=3, color='red') +        
xlim(-1.,1) + 
ylim(-1.,1.) + 
coord_fixed()



Loadings	with	arrows
> arrow_style <- arrow(length = unit(0.05, "inches"), type = "closed")
> ggplot(loadings) + 

geom_segment(x=0, y=0, aes(xend=PC1, yend=PC2), arrow = arrow_style) + 
geom_text(aes(x=PC1, y=PC2, label=rowname), size=3, color='red') +        
xlim(-1.,1) + 
ylim(-1.,1.) + 
coord_fixed()
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positively	on	PC1,	but	not	at	all	on	
PC2.

Sepal.Width is	orthogonal to	petals,	
meaning	it	captures	uncorrelated	
variation



Variation	explained
> as.tibble((iris.pca$sdev)^2 / (sum(iris.pca$sdev^2))) -> variance
# A tibble: 4 x 1

value
<dbl>

1 0.729624454
2 0.228507618
3 0.036689219
4 0.005178709

> variance %>% mutate(PC = colnames(iris.pca$x)) %>%
ggplot(aes(x = PC, y = value)) + 
geom_bar(stat = "identity")
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Variation	explained
> variance %>% mutate(PC = colnames(iris.pca$x)) %>%

ggplot(aes(x = PC, y = value)) + 
geom_bar(stat = "identity") + 
geom_text(aes(x = PC, y = value+0.01, label=100*round(value,3)))
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Breathe	break



Clustering	
A	family	of	approaches	to	identify	previously	unknown	or	
undetected	groupings	in	data

Requires:
◦ A measure	of	distance	and/or	similarity	among	data	points
◦ A	clustering	algorithm	to	create	the	groupings	



There	are	too	many	algorithms	and	no	
real	answers



K-means	clustering
Clusters	data	into	k groups	of	equal	variance	by	minimizing	the	
within-cluster	sum	of	squares
Divide	n data	points	into	k disjoint	clusters,	each	described	by	its	
mean	(ish)
K	is	specified	in	advance



K-means	algorithm
1. Place	k	"centroids"	in	the	data
2. Assign	point	to	cluster	k	based	on	Euclidian	distance	
3. Re-compute	each	k centroid	based	on	means	of	associated	

points	
4. Re-assign	centroids
5. Repeat	until	convergence	

https://en.wikipedia.org/wiki/K-means_clustering#/media/File:K-means_convergence.gif



Do	it	yourself	here:
https://www.naftaliharris.com/blog/visualizing-k-means-
clustering/



K-means	caveats
Clustering	depends	on	initial	conditions

Algorithm	guaranteed	to	converge,	but	possibly	on	local	optima

No	real	way	to	know	if	clusters	have	meaning	beyond	the	math
◦ This	is	true	for	all	clustering!



Example:	iris	with	K=5
> iris %>%

select(-Species) %>% ### We can only cluster numbers!
kmeans(5)

K-means clustering with 5 clusters of sizes 50, 12, 25, 24, 39

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000
2 7.475000 3.125000 6.300000 2.050000
3 5.508000 2.600000 3.908000 1.204000
4 6.529167 3.058333 5.508333 2.162500
5 6.207692 2.853846 4.746154 1.564103

Clustering vector:
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 3 5 5 5 3 5 3 3 5 3 5 3 5 5 3 5 3 5 3 5 5
[75] 5 5 5 5 5 3 3 3 3 5 3 5 5 5 3 3 3 5 3 3 3 3 3 5 3 3 4 5 2 4 4 2 3 2 4 2 4
[112] 4 4 5 4 4 4 2 2 5 4 5 2 5 4 2 5 5 4 2 2 2 4 5 5 2 4 4 5 4 4 4 5 4 4 4 5 4
[149] 4 5

Within cluster sum of squares by cluster:
[1] 15.15100 4.65500 8.36640 5.46250 12.81128
(between_SS / total_SS = 93.2 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault" 



Example:	iris	with	K=5… and	broom!
> iris %>%

select(-Species) %>% ### We can only cluster numbers!
kmeans(5) %>%
augment(iris) %>% ### Add clusters back into to original data frame
head()

Sepal.Length Sepal.Width Petal.Length Petal.Width Species .cluster
1 5.1 3.5 1.4 0.2 setosa 4
2 4.9 3.0 1.4 0.2 setosa 4
3 4.7 3.2 1.3 0.2 setosa 4
4 4.6 3.1 1.5 0.2 setosa 4
5 5.0 3.6 1.4 0.2 setosa 4
6 5.4 3.9 1.7 0.4 setosa 4



tidy()	shows	per-cluster	information
> iris %>%

select(-Species) %>% ### We can only cluster numbers!
kmeans(5) %>%
tidy()

x1 x2 x3 x4 size withinss cluster
1 5.532143 2.635714 3.960714 1.2285714 28 9.749286 1
2 6.264444 2.884444 4.886667 1.6666667 45 17.014222 2
3 4.704545 3.122727 1.413636 0.2000000 22 3.114091 3
4 7.014815 3.096296 5.918519 2.1555556 27 15.351111 4
5 5.242857 3.667857 1.500000 0.2821429 28 4.630714 5



Visualize	the	clustering
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> iris %>%
select(-Species) %>%
kmeans(5) %>%
augment(iris) %>% 
ggplot(aes(x = Petal.Length, y=Sepal.Width)) + geom_point(aes(color = .cluster))

No	clear	way	to	know	"best"	X	and	
Y	axes	besides	exhaustive	plotting



Was	K=5	reasonable?
One	(of	many)	approaches	to	choosing	the	best	K	is	the	"elbow	
method"
◦ Plot	within-sum-of-squares	across	different	K	choices
◦ "Best"	k	is	where	you	see	an	elbow/kink	in	the	plot
◦ Highly	subjective



Choosing	K	with	broom
>iris %>%

select(-Species) %>%
kmeans(5) %>%
glance()
totss tot.withinss betweenss iter

1 681.3706 51.08942 630.2812 2

> numeric.iris <- iris %>% select(-Species)
> tibble(k = 2:15) %>%    

group_by(k) %>%    
do(kclust=kmeans(numeric.iris, .$k)) %>%    
glance(kclust)

k totss tot.withinss betweenss iter
1 2 681.3706 152.34795 529.0226 1
2 3 681.3706 78.85144 602.5192 2
3 4 681.3706 57.26562 624.1050 2
4 5 681.3706 49.82228 631.5483 2
5 6 681.3706 42.42155 638.9491 4
6 7 681.3706 36.83714 644.5335 3
7 8 681.3706 40.84578 640.5248 3
...



Choosing	K	with	broom
> numeric.iris <- iris %>% select(-Species)
> tibble(k = 2:15) %>%    

group_by(k) %>%    
do(kclust=kmeans(numeric.iris, .$k)) %>%    
glance(kclust) %>%
mutate(g = 1) %>%    ### ggplot gets angsty with geom_line without this specification
ggplot(aes(x = factor(k), y = tot.withinss, group=g)) + geom_point() + geom_line()
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"Elbow"	=	shift	in	slope	happens	around	K=4



Hierarchical	clustering
Extremely	common	in	gene	expression	and/or	systems	biology	
studies
Useful	when	data	have	a	hierarchical	structure:



Approach

Divisive	(top	
down)

Agglomerative	
(bottom	up)



Example	output

https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html

2

3

4
6



You	will	see	this	figure	in	every	–omics	
paper	you	read

Alizadeh, A. et al., Distinct 
types of diffuse large B-cell 
lymphoma identified by gene  
expression profiling, Nature 
403, p. 503-511, 2000

Alizadeh et	al.	Nature	2000



What	does	the	real	world	have	to	say?



BMC Bioinformatics 2008, 9:497 http://www.biomedcentral.com/1471-2105/9/497
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4. Within this class of hierarchical clustering algorithms,
the single linkage presented the worst results.

5. With respect to the use of proximity measures with hier-
archical clustering methods, Pearson's correlation and
cosine often led to the best results.

6. To present cR values compatible to those obtained with
KM and FMG, the class of hierarchical clustering methods
usually required a much more reduced coverage.

7. Spectral clustering showed to be quite sensitive to the
proximity measure employed.

With respect to the statement in Item 1, it is important to
point out that, although, on average, our experimental

work demonstrates that FMG and KM exhibited a better
performance in terms of the corrected Rand than the other
methods investigated, this does not imply that these algo-
rithms would always be the best choice. Indeed, as one
can see in the table in the supplemental material describ-
ing the individual performance of the algorithms, for cer-
tain data sets, such as Pomeroy-V2, the SNN with P
achieved a much larger cR than all the other methods [38].

A principled way to tackle this problem of predicting
which methods would work better for a certain data set
with particular data properties (i.e., number of samples,
sample dimensionality, array type, etc.) is the use of meta-
learning approaches [42]. For example, in a smaller scale
study, [43] shows that a meta-learning approach taking
into consideration only a set of descriptive statistics of a

PCA plot for Alizadeh-V2Figure 6
PCA plot for Alizadeh-V2. We display a scatter plot with the two first largest components of a PCA for Alizadeh-V2. 
Colors indicate the three classes in the data: diffuse large B-cell lymphoma in red (DLBCL), follicular lymphoma in green (FL) 
and chronic lymphocytic leukemia in blue(CLL).
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Abstract
Background: The use of clustering methods for the discovery of cancer subtypes has drawn a
great deal of attention in the scientific community. While bioinformaticians have proposed new
clustering methods that take advantage of characteristics of the gene expression data, the medical
community has a preference for using "classic" clustering methods. There have been no studies thus
far performing a large-scale evaluation of different clustering methods in this context.

Results/Conclusion: We present the first large-scale analysis of seven different clustering
methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Our
results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best
performance in terms of recovering the true structure of the data sets. These methods also
exhibited, on average, the smallest difference between the actual number of classes in the data sets
and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical
methods, which have been widely used by the medical community, exhibited a poorer recovery
performance than that of the other methods evaluated. Moreover, as a stable basis for the
assessment and comparison of different clustering methods for cancer gene expression data, this
study provides a common group of data sets (benchmark data sets) to be shared among
researchers and used for comparisons with new methods. The data sets analyzed in this study are
available at http://algorithmics.molgen.mpg.de/Supplements/CompCancer/.

Background
Microarray technologies enable the measurement of
molecular signatures of cancer cells. These data allow dif-
ferent types of analyses, such as (1) the identification of
differentially expressed genes [1], which could indicate
possible gene targets for more detailed molecular studies
or drug treatments and (2) the building of classifiers, with
machine learning techniques, which could be used to
improve the diagnosis of patients with cancer [2]. Another

common and more exploratory analysis is to perform a
clustering of the cancer/patient samples (tissues). The aim
is to find groups of samples sharing similar expression
patterns, which can lead to the discovery of new cancer
subtypes. This kind of analysis was first employed in [3]
and [4]. Since then, clustering methods have drawn a great
deal of attention in the scientific community [5]. Bioinfor-
maticians have been proposing novel clustering methods
that take intrinsic characteristics of gene expression data

Published: 27 November 2008

BMC Bioinformatics 2008, 9:497 doi:10.1186/1471-2105-9-497

Received: 7 July 2008
Accepted: 27 November 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/497

© 2008 de Souto et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

BMC Bioinformatics 2008, 9:497 http://www.biomedcentral.com/1471-2105/9/497

Page 8 of 14

(page number not for citation purposes)

One of the reasons for this kind of problem is that hierar-
chical clustering is based on local decisions, merging the
most "compact" cluster available at each step [24]. The
compactness criterion (or how close together objects are)
is defined by the linkage criteria and proximity measure
used. On the other hand, k-means maximizes a criterion,
which is a combination of cluster compactness and cluster
separation. The problem can be illustrated in a two-
dimensional representation of the Alizadeth-V2 data set,
after selecting the two-largest components using principal
component analysis (PCA) – Figure 6. Based on this fig-
ure, we can see that samples from distinct classes form
natural clusters. More specifically, although the cluster
with DLBCL samples (red dots) is well-separated from the
other two clusters, it lies within a non-compacted region.
Thus, as hierarchical clustering has a bias towards com-
pacted clusters, if we simply follow the hierarchical tree, it
would first suggest the sub-division of the cluster with
DLBCL samples before sub-dividing the groups with FL
and CLL samples. In a hypothetical scenario where there
is no a priori knowledge on the distinction between FL
and CLL samples, the use of hierarchical clustering alone
would not indicate the existence of these two classes. In
contrast, this would be detected with k-means or clearly
visualized with a simple PCA analysis.

Conclusion
We have provided the first large-scale data-driven compar-
ative study of seven clustering algorithms and four prox-
imity measures applied to 35 cancer gene expression data
sets. In the following, we summarize some of the general
trends (guidelines for clustering cancer gene expression
data) that emerged from our comparative study.

1. Overall, among the 35 data sets investigated, the FMG
exhibited the best performance, followed closely by KM,
in terms of the recovery of the actual structure of the data
sets, regardless of the proximity measure used.

2. For most algorithms, there is a clear interaction
between reduced coverage and an increase in the ability of
the algorithm to group the samples correctly – larger cor-
rected Rand.

3. The shortcomings of hierarchical methods is noticea-
ble, as it has been the case in the analyses developed in the
context of clustering genes [31,32]. One of the reasons for
this is the sensitivity of hierarchical clustering to noise in
the data [5,24,29].

Hierarchical Clustering and k-means for Alizadeh-V2Figure 5
Hierarchical Clustering and k-means for Alizadeh-V2. We display the red and green plots for (a) the hierarchical clus-
tering and (b) the k-means for the data set Alizadeh-V2. Columns correspond to genes and rows correspond to cancer sam-
ples. The samples are labeled according to one of three classes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma 
(FL) and chronic lymphocytic leukemia (CLL). In the case of k-means, the number of clusters was set at three. Likewise, for 
hierarchical clustering, the tree was cut so as to return three clusters, corresponding to the red, light blue and black sub-trees.
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Abstract
Recently, the Mouse ENCODE Consortium reported that comparative gene
expression data from human and mouse tend to cluster more by species rather
than by tissue. This observation was surprising, as it contradicted much of the
comparative gene regulatory data collected previously, as well as the common
notion that major developmental pathways are highly conserved across a wide
range of species, in particular across mammals. Here we show that the Mouse
ENCODE gene expression data were collected using a flawed study design,
which confounded sequencing batch (namely, the assignment of samples to
sequencing flowcells and lanes) with species. When we account for the batch
effect, the corrected comparative gene expression data from human and
mouse tend to cluster by tissue, not by species.
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Comparison of the transcriptional landscapes between
human and mouse tissues
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Although the similarities between humans and mice are typically
highlighted, morphologically and genetically, there are many differ-
ences. To better understand these two species on a molecular level,
we performed a comparison of the expression profiles of 15 tissues
by deep RNA sequencing and examined the similarities and differ-
ences in the transcriptome for both protein-coding and -noncoding
transcripts. Although commonalities are evident in the expression of
tissue-specific genes between the two species, the expression for
many sets of genes was found to be more similar in different tissues
within the same species than between species. These findings were
further corroborated by associated epigenetic histonemark analyses.
We also find that many noncoding transcripts are expressed at a low
level and are not detectable at appreciable levels across individuals.
Moreover, the majority lack obvious sequence homologs between
species, evenwhenwe restrict our attention to those which are most
highly reproducible across biological replicates. Overall, our results
indicate that there is considerable RNA expression diversity between
humans and mice, well beyondwhat was described previously, likely
reflecting the fundamental physiological differences between these
two organisms.

transcriptome | epigenome | species comparison | noncoding transcripts

The mouse has served as a valuable model organism for hu-
man biology and disease. It is widely assumed that bio-

chemical, cellular, and developmental pathways in the mouse are
highly conserved with humans and that many processes are
clearly preserved at a molecular and genetic level. Moreover,
recent detailed studies have examined gene expression in a lim-
ited number of tissues in humans and mice. These studies have
indicated that gene expression is often conserved and is more
similar between the comparable tissues of different organisms
rather than within tissues of the same organism. In contrast, the
transcript isoform repertoire was found to be markedly different
between species (1, 2).

Gene Expression Is More Similar Among Tissues Within
a Species Than Between Corresponding Tissues of the Two
Species
To examine the similarities between humans and mice in much
greater detail, we produced RNA-seq data from 13 human tissues
[as part of the Encyclopedia Of DNA Elements (ENCODE)],
another 11 human tissues [as part of the Roadmap Epigenomics
Mapping Consortium (REMC) (3)], and 13 mouse tissues (for
mouse ENCODE). We also included in our analysis other data
from mouse ENCODE and the Illumina Human BodyMap 2.0
(HBM) (SI Materials and Methods). Sequencing was performed
to a depth of 11,313,824–166,188,101 mappable reads (median
of 68,399,538 with and an interquartile range of 31,557,381–
81,836,199). In total, our analysis used 93 datasets encompassing
the most tissue-diverse RNA-seq dataset to date spanning several

major projects. Thirteen of the mouse and human orthologous
datasets were produced by the same laboratory. For our analysis
regarding noncoding transcripts, we incorporated an additional 294
RNA-seq datasets from the Genotype-Tissue Expression (GTEx)
project (4).
We first explored gene expression similarities and differences by

analyzing the expression of ∼15,106 protein-coding orthologs; this
list was generated by the modENCODE and mouse ENCODE
consortia and represents the most recent mouse–human ortholog
list to date (biorxiv.org/content/biorxiv/early/2014/05/31/005736.full.
pdf). Fragments per kilobase of transcript per million (FPKM)
values were obtained from each dataset, and principal component
analysis (PCA) was used to compare gene expression (Materials and
Methods). In contrast to what was reported previously (1, 2, 5),
surprisingly, we found that themouse and human samples cluster by
species when the data are projected onto the first three principal
components (Fig. 1A). Because the same tissues of the same species
produced by different laboratories did not cluster together, the
possibility of methodologic differences among laboratories con-
founding our results was considered. To address this issue, analysis
of only the 13 paired samples processed under one experimental
protocol yielded the same species-specific clustering (Fig. 1C). The
same species-specific clustering was observed when other combi-
nations of 10 or more tissues were examined, indicating that the
clustering is not due to the particular 13–15 tissues selected. Finally,

Significance

To date, various studies have found similarities between humans
and mice on a molecular level, and indeed, the murine model
serves as an important experimental system for biomedical sci-
ence. In this study of a broad number of tissues between humans
and mice, high-throughput sequencing assays on the tran-
scriptome and epigenome reveal that, in general, differences
dominate similarities between the two species. These findings
provide the basis for understanding the differences in pheno-
types and responses to conditions in humans and mice.
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Original	findings:	Clusters	by	species

Per-gene raw fragment counts
To compute per gene raw counts from the alignment files produced 
by Tophat7, we used the program featureCounts v1.4.411 with the 
respective species’ GTF file specified in the “Genome and gene 
annotation files” section. For all runs we used the following options: 
“-p” - indicates that fragments rather than reads should be counted; 
“-C” - indicates that chimeric fragments will not be included in 
the summarization process; and “-s 2” - indicates that the paired-
ends are reversely stranded. We next generated a matrix of 14,744 
by 26 raw counts for each gene (in the ortholog table) and sam-
ple. Since the output from featureCounts identifies genes by their 
gene identifier (the ENSEMBL identifier in our case), whereas the 
ortholog table uses the gene’s common name to identify it, we used 
the GC content table, which contains both these identifiers to match 
counts to the correct row in the ortholog table. As we did when 
generating the FPKM matrix, we ignored the values from retired 
ENSEMBL identifiers, and if there were still multiple identifiers for 
the same common name, we used the value from the identifier that 
appeared first.

Results
In this reanalysis effort, we focused solely on the RNA sequenc-
ing data that can be mapped to coding regions. Lin et al.2 reported 
additional results, related to data on the expression of non-coding 
transcripts and histone marks. We did not reanalyze these additional 
data types.

Lin et al.2 analyzed both previously published and newly collected 
human and mouse gene expression data. The previously published 
data consist of RNA sequencing from ENCODE, the Illumina Human 
BodyMap 2.0, and the Roadmap Epigenomics Mapping Consortium. 
In these previously collected data sets, human and mouse samples 
were analyzed by different labs at different times, such that there is a 

clear batch effect that is confounded with species. Lin et al.2 clearly 
explains this limitation of the previously published data. They state 
that in order to address this issue they focus on the analysis of only 
the newly collected data – RNA sequencing data of samples from 13 
human and mouse tissues that were collected by the same lab, using 
the same sample processing protocol. We focus our reanalysis study 
on the same newly collected data set (see Methods).

Replication of sample clustering by species
As a first step of our study we set out to replicate the analysis of 
Lin et al.2. To do so, we started with the matrix of FPKM values 
(computed, using Cufflinks10, based on the read alignments to the 
genome). This analysis was done within R environment v 3.1.3 
GUI 1.65 Snow Leopard build (6912)12. See Supplementary Text 
1 for detailed commands, and a supplement zip file for the R input 
(available in Zenodo: http://dx.doi.org/10.5281/zenodo.17606).

We log2-transformed the FPKM matrix (after adding 1 to avoid 
undefined values). To visualize the data, we used an approach that 
is similar in principle to that used by the ENCODE mouse con-
sortium and Lin et al. Specifically, we used the function ‘prcomp’ 
(with the ‘scale’ and ‘center’ options set to TRUE) to perform prin-
cipal component analysis (PCA) of the transposed FPKM matrix 
(so that samples were now in rows and genes in columns), after 
removal of invariant columns (genes). Scatter plots of the PCA 
results were generated using the ggplot2 package13. In agreement 
with the findings of Lin et al.2 the samples cluster mostly by species 
(Figures 2a, Figure S1 and Figure S2). We also plotted the heatmap 
of the matrix of Pearson correlations between the 26 samples, using 
the pheatmap function from the pheatmap package v1.0.214 with 
default settings (i.e. complete linkage hierarchical clustering using 
the Euclidean distances). Again, samples from the same species 
tend to cluster together (Figure 2b).

Figure 2. Recapitulating the patterns reported by the mouse ENCODE papers. a. Two-dimensional plots of principal components 
calculated by performing PCA of the transposed log-transformed FPKM values (from 14,744 orthologous gene pairs) for the 26 samples, 
after removal of invariant columns (genes). b. Heatmap based on pairwise Pearson correlation of expression data used in panel a. We used 
Euclidean distance and complete linkage as distance measure and clustering method, respectively.
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Confounding	study	design	means	results	
dominated	by	batch	effects

of the number of ortholog pairs analyzed by Lin et al. Nevertheless, 
we believe that a possible explanation for this disparity is a pars-
ing error. The last two columns of the ‘modENCODE ortholog file’ 
represent the number of genes from each species in the ortholog 
group. One of the steps required to obtain the subset of ortholog 
groups for analysis is to select those records where the two last col-
umns have a value of 1 (i.e. one-to-one ortholog pairs). We found 
that if this selection is done through a command line search that 
does not require that the value in the last column be exactly “1”, 
but rather just begins with “1”, then the result is 15,104 putative 
human-mouse ortholog pairs.

Quality assessment of RNA-Seq data
We used the FastQC software v0.10.0 (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to assess the quality of the individ-
ual FASTQ files (Supplementary Table 2–Supplementary Table 6). 
We were concerned by evidence for GC content bias and over-
represented sequences. To examine the latter in greater detail, we 
mapped the sequences overrepresented in at least one sample to the 
genome of the respective species, using BLAT searches6 against the 
hg19 (human) and mm10 (mouse) assemblies at the UCSC genome 
browser site (http://genome.ucsc.edu/)6. We found that in both spe-
cies many of the overrepresented sequences mapped perfectly to 
the mitochondrial genome (Supplementary Table 3–Supplementary 
Table 6). For the mouse pancreas sample only, we also found many 
overrepresented sequences mapped to regions with rRNA repeats 
from the SSU-rRNA_Hsa and LSU-rRNA_Hsa families.

Mapping RNA-Seq reads to genome sequences
We mapped the RNA-Seq reads to their respective genomes using 
Tophat v2.0.117 with the following options: “--mate-inner-dist 200” 
(i.e. inner mate distance is 200nt, based on paired-end reads with 
length 100nt each and an insert size of 350-450nt ); “--bowtie-n” 
(i.e. the “-n” option will be used in Bowtie8 in the initial read map-
ping stage); “-g 1” (i.e. multi-mapping reads will be excluded from 
alignment); “-m 1” (i.e. one mismatch is allowed in the anchor region 
of a spliced alignment); “--library-type fr-firststrand” (the libraries 
had been constructed using the Illumina TruSeq Stranded mRNA LT 
Sample Prep Kit2). An exception was the mouse pancreas sample, for 
which the mapping process stalled consistently at the same stage. 

For this sample we used Tophat v1.4.18 with the same options as 
above. Tophat requires a Bowtie8 index. For human we used the 
Bowtie index that was packaged with the genome sequence in the 
file downloaded from the Illumina iGenomes page (http://support.
illumina.com/sequencing/sequencing_software/igenome.html). For 
mouse we built an index using the bowtie-build utility from Bowtie 
v2.2.1 (v 0.12.7 for the index used with Tophat v1.4.1).

Calculating gene GC content
For each of the two species we used the appropriate GTF file to 
generate a table, which contains for each gene its ENSEMBL gene 
identifier its common name, and the GC content of the sequence 
covered by the union of the gene’s transcripts. To this end, we first 
generated a GTF file where overlapping exons from different tran-
scripts of the same gene were merged into a single “exon” with the 
same sequence coverage, retaining the association with the gene 
identifier. Next, we computed the nucleotide content of the exons 
in this new GTF file using the ‘nuc’ utility from bedtools v2.17.09. 
Finally, we computed the GC content for each gene identifier by 
summing the number of ‘G’ and ‘C’ nucleotides in its merged exons 
and dividing by the sum of counts of unambiguous nucleotides in 
these exons.

Per-gene FPKM values
We used Cufflinks v2.2.110 to compute fragments per kilo base 
of transcript per million (FPKM) values and aggregate them per 
gene. The only option used was “--library-type fr-firststrand”. For 
the required transcript annotation file (“-G” parameter) we used 
the GTF file for the respective species described in the “Genome 
and gene annotation files” section. We then generated a matrix of 
14,744 by 26 FPKM values for each gene (in the ortholog table) 
and sample. While generating this table we noticed that some 
of the common gene names were associated with more than one 
ENSEMBL gene identifier. In some cases we determined that 
this was due to gene identifiers that have been retired from the 
ENSEMBL database3 but were retained in the GTF file (27 and 64 
retired identifiers for human and mouse, respectively). These retired 
identifiers were ignored when constructing the FPKM matrix. For 
the remaining such cases we incorporated the value from the first 
appearance of the common name.

Figure 1. Study design. Sequencing batches as inferred based on the sequence identifiers of the RNA-Seq reads.
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Accounting	for	batch	effects	changes	the	
story

Analysis of normalized data after accounting for batch 
effects yields clustering by tissue
A previous evaluation of normalization methods for RNA-Seq 
data15 suggested that FPKM values were not optimal for cluster-
ing analysis. Therefore, as a basis for our reanalysis, we used the 
matrix of per-gene raw fragment counts. The entire analysis was 
done within R environment v 3.1.3 GUI 1.65 Snow Leopard build 
(6912)12. See Supplementary Text 2 for detailed commands, and 
a supplement zip file for the R input (available in Zenodo: http://
dx.doi.org/10.5281/zenodo.17606).

Following Li et al.16, we removed the 30% of genes with the lowest 
expression as determined by the sum of fragment counts across all 
samples. Next, due to the presence of mitochondrial genes among 
the overrepresented sequences in the data, we also removed reads 
that map to the 12 mitochondrial genes. This left us with expression 
data from 10,309 genes for analysis. We note that merely limiting 
the analysis to this subset of genes does not have a marked effect on 
the patterns reported by Lin et al. (Figure S3; detailed commands 
in Supplementary Text 3, and a supplement zip file for the R input 
(available in Zenodo: http://dx.doi.org/10.5281/zenodo.17606)). We 
performed within-column normalization to remove the GC bias in 
the data, indicated by the initial quality assessment. To this end, we 
applied the ‘withinLaneNormalization’ function from the EDASeq 
package v2.0.017 to each column in the matrix, using the gene GC 
values for the species associated with the column. Next, we used the 
‘calcNormFactors’ from the edgeR package v3.8.618, with the trimmed 
mean of M-values (TMM) method19, to calculate normalization 

factors for the library sizes for the samples. We used these normali-
zation factors in the depth normalization of the columns (using the 
column sums of the original, unfiltered, counts matrix as a proxy 
for library sizes). The normalized data were log2-transformed (after 
adding ‘1’ to each value in the matrix to avoid undefined values).

We then considered how to account for the fact that the assignment 
of samples to sequencing flowcells and lanes was nearly completely 
confounded with the species annotations of the samples (Figure 1). 
The consideration of ‘batch effect’ was the most important differ-
ence between the analysis that recapitulated the patterns reported 
by the mouse ENCODE papers (the previous ‘Results’ section) 
and the current reanalysis effort. Specifically, we accounted for the 
sequencing study design batch effects using the ‘ComBat’ function 
from the sva package v3.12.020, with a model that includes effects 
for batch, species and tissue. For this purpose the samples were 
classified into five batches, based on the sequencing study design 
(see methods and Figure 1).

To visualize the data, we used the function ‘prcomp’ (with the 
‘scale’ and ‘center’ options set to TRUE) to perform principal com-
ponent analysis (PCA) of the transposed log-transformed matrix of 
‘clean’ values (after removal of invariant columns, i.e. genes), and 
the ggplot2 package13 to generate scatter plots of the PCA results. 
None of the first five principal components (accounting together 
for 56% of the variability in the data) support the clustering of the 
gene expression data by species (Figure 3a and Figure S4–Figure S5). 
However, the sixth principal component, which accounts for 6% of 

Figure 3. Clustering of data once batch effects are accounted for. a. Two-dimensional plots of principal components calculated by 
applying PCA to the transposed matrix of batch-corrected log-transformed normalized fragment counts (from 10,309 orthologous gene pairs 
that remained after the exclusion steps described in the results) for the 26 samples, after removal of invariant columns (genes). b. Heatmap 
based on pairwise Pearson correlation of the expression data used in panel a. We used Euclidean distance and complete linkage as distance 
measure and clustering method, respectively.
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Today's	very	believable	GWAS	

152 VOLUME 49 | NUMBER 1 | JANUARY 2017 NATURE GENETICS

Personality is influenced by genetic and environmental factors1 
and associated with mental health. However, the underlying 
genetic determinants are largely unknown. We identified six 
genetic loci, including five novel loci2,3, significantly associated 
with personality traits in a meta-analysis of genome-wide 
association studies (N = 123,132–260,861). Of these genome-
wide significant loci, extraversion was associated with variants 
in WSCD2 and near PCDH15, and neuroticism with variants 
on chromosome 8p23.1 and in L3MBTL2. We performed a 
principal component analysis to extract major dimensions 
underlying genetic variations among five personality traits  
and six psychiatric disorders (N = 5,422–18,759). The first  
genetic dimension separated personality traits and psychiatric 
disorders, except that neuroticism and openness to experience 
were clustered with the disorders. High genetic correlations 
were found between extraversion and attention-deficit–
hyperactivity disorder (ADHD) and between openness and 
schizophrenia and bipolar disorder. The second genetic 
dimension was closely aligned with extraversion–introversion 
and grouped neuroticism with internalizing psychopathology 
(e.g., depression or anxiety). 

The five-factor model (FFM) of personality, also known as the ‘Big Five’, 
is commonly used to measure individual differences in personality. It 
models personality according to five broad domains4. Extraversion 
(versus introversion) reflects talkativeness, assertiveness and a high 
activity level. Neuroticism (versus emotional stability) reflects negative 
affect, such as anxiety and depression. Agreeableness (versus antago-
nism) measures cooperativeness and compassion. Conscientiousness 
(versus undependability) indicates diligence and self-discipline. 
Openness to experience (versus being closed to experience)  

captures intellectual curiosity and creativity4,5. Personality pheno-
types, measured by various questionnaires, are represented by  
continuous quantitative scores for each of the five traits4.

A meta-analysis of twin and family studies found that approxi-
mately 40% of the variance in personality could be attributed to genetic  
factors1. Genome-wide association studies (GWAS) have discovered 
several variants associated with FFM traits6–8. Neuroticism was reported 
to be associated with an intronic variant in MAGI1 (P = 9.26 × 10−9,  
N = 63,661)7, conscientiousness with an intronic variant in KATNAL2 
(P = 4.9 × 10−8, N = 17,375)6, and openness with variants near RASA1 
(P = 2.8 × 10−8, N = 17,375)6 and PTPRD (P = 1.67 × 10−8, N = 1,089)8. 
Additionally, recent UK Biobank studies (N = 106,716–170,908) 
yielded several SNPs associated with neuroticism2,3.

Information collected by the consumer genomics company 
23andMe contains well-phenotyped data on personality, as all par-
ticipants were evaluated with the same personality inventory (Online 
Methods). Thus, the 23andMe data offer an opportunity to identify 
additional genetic variants. We performed a meta-analysis based on 
GWAS summary statistics to identify genetic variants associated with 
FFM traits. We included participants with European ancestry from 
23andMe (N = 59,225) and two samples (GPC-1 and GPC-2) from the 
Genetics of Personality Consortium (GPC)6,7. GPC-1 (N = 17,375)6 
contains data on agreeableness, conscientiousness and openness, 
whereas GPC-2 (N = 63,661)7 contains information on extraversion 
and neuroticism.

Summary statistics of GWAS from 23andMe (Supplementary  
Data Sets 1–5) were combined with the two GPC samples separately, 
yielding totals of 76,600 and 122,886 subjects for the discovery–stage 
1 sample. Eight linkage disequilibrium (LD)-independent SNPs (LD 
r2 < 0.05) exceeded genome-wide significance (P < 5 × 10−8) in the 
discovery meta-analysis (Table 1 and Fig. 1).

Genome-wide analyses for personality traits identify 
six genomic loci and show correlations with psychiatric 
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Min-Tzu Lo1, David A Hinds2, Joyce Y Tung2, Carol Franz3, Chun-Chieh Fan1,4, Yunpeng Wang5–7, Olav B Smeland6,7,  
Andrew Schork1,4, Dominic Holland5, Karolina Kauppi1,8, Nilotpal Sanyal1, Valentina Escott-Price9,  
Daniel J Smith10, Michael O’Donovan9, Hreinn Stefansson11, Gyda Bjornsdottir11, Thorgeir E Thorgeirsson11, 
Kari Stefansson11, Linda K McEvoy1, Anders M Dale1,3,5, Ole A Andreassen6,7 & Chi-Hua Chen1

1Department of Radiology, University of California, San Diego, La Jolla, California, USA. 223andMe, Inc., Mountain View, California, USA. 3Department of Psychiatry, 
University of California, San Diego, La Jolla, California, USA. 4Department of Cognitive Science, University of California, San Diego, La Jolla, California, USA. 
5Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. 6NORMENT, KG Jebsen Centre for Psychosis Research, Institute of 
Clinical Medicine, University of Oslo, Oslo, Norway. 7Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 8Department of Radiation 
Sciences, Umea University, Sweden. 9MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK. 10Institute of Health and Wellbeing, 
University of Glasgow, Glasgow, UK. 11deCODE Genetics/Amgen, Reykjavik, Iceland. Correspondence should be addressed to C.-H.C. (chc101@ucsd.edu).

Received 22 July; accepted 2 November; published online 5 December 2016; doi:10.1038/ng.3736

L E T T E R S

152 VOLUME 49 | NUMBER 1 | JANUARY 2017 NATURE GENETICS

Personality is influenced by genetic and environmental factors1 
and associated with mental health. However, the underlying 
genetic determinants are largely unknown. We identified six 
genetic loci, including five novel loci2,3, significantly associated 
with personality traits in a meta-analysis of genome-wide 
association studies (N = 123,132–260,861). Of these genome-
wide significant loci, extraversion was associated with variants 
in WSCD2 and near PCDH15, and neuroticism with variants 
on chromosome 8p23.1 and in L3MBTL2. We performed a 
principal component analysis to extract major dimensions 
underlying genetic variations among five personality traits  
and six psychiatric disorders (N = 5,422–18,759). The first  
genetic dimension separated personality traits and psychiatric 
disorders, except that neuroticism and openness to experience 
were clustered with the disorders. High genetic correlations 
were found between extraversion and attention-deficit–
hyperactivity disorder (ADHD) and between openness and 
schizophrenia and bipolar disorder. The second genetic 
dimension was closely aligned with extraversion–introversion 
and grouped neuroticism with internalizing psychopathology 
(e.g., depression or anxiety). 

The five-factor model (FFM) of personality, also known as the ‘Big Five’, 
is commonly used to measure individual differences in personality. It 
models personality according to five broad domains4. Extraversion 
(versus introversion) reflects talkativeness, assertiveness and a high 
activity level. Neuroticism (versus emotional stability) reflects negative 
affect, such as anxiety and depression. Agreeableness (versus antago-
nism) measures cooperativeness and compassion. Conscientiousness 
(versus undependability) indicates diligence and self-discipline. 
Openness to experience (versus being closed to experience)  

captures intellectual curiosity and creativity4,5. Personality pheno-
types, measured by various questionnaires, are represented by  
continuous quantitative scores for each of the five traits4.

A meta-analysis of twin and family studies found that approxi-
mately 40% of the variance in personality could be attributed to genetic  
factors1. Genome-wide association studies (GWAS) have discovered 
several variants associated with FFM traits6–8. Neuroticism was reported 
to be associated with an intronic variant in MAGI1 (P = 9.26 × 10−9,  
N = 63,661)7, conscientiousness with an intronic variant in KATNAL2 
(P = 4.9 × 10−8, N = 17,375)6, and openness with variants near RASA1 
(P = 2.8 × 10−8, N = 17,375)6 and PTPRD (P = 1.67 × 10−8, N = 1,089)8. 
Additionally, recent UK Biobank studies (N = 106,716–170,908) 
yielded several SNPs associated with neuroticism2,3.

Information collected by the consumer genomics company 
23andMe contains well-phenotyped data on personality, as all par-
ticipants were evaluated with the same personality inventory (Online 
Methods). Thus, the 23andMe data offer an opportunity to identify 
additional genetic variants. We performed a meta-analysis based on 
GWAS summary statistics to identify genetic variants associated with 
FFM traits. We included participants with European ancestry from 
23andMe (N = 59,225) and two samples (GPC-1 and GPC-2) from the 
Genetics of Personality Consortium (GPC)6,7. GPC-1 (N = 17,375)6 
contains data on agreeableness, conscientiousness and openness, 
whereas GPC-2 (N = 63,661)7 contains information on extraversion 
and neuroticism.

Summary statistics of GWAS from 23andMe (Supplementary  
Data Sets 1–5) were combined with the two GPC samples separately, 
yielding totals of 76,600 and 122,886 subjects for the discovery–stage 
1 sample. Eight linkage disequilibrium (LD)-independent SNPs (LD 
r2 < 0.05) exceeded genome-wide significance (P < 5 × 10−8) in the 
discovery meta-analysis (Table 1 and Fig. 1).
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to examine whether GWAS signals colocalize with eQTL. COLOC-
estimated posterior probabilities18 (Online Methods) indicated  
that one SNP-associated locus (rs57590327) and its correspond-
ing eQTL (Supplementary Table 1) were probably attributable to a 
common causal variant (posterior probability = 0.76). Another SNP 
(rs216273) showed evidence of independence with eQTL (posterior 
probability = 0.75). For the rest of the SNPs, the posterior probability 
ranged between 0 and 0.45, failing to support any of the specified 
hypotheses. Our analyses did not show consistent evidence for these 
SNPs influencing personality traits through gene expression in the 
brain, but cautious interpretation is warranted owing to the small 
eQTL sample (N = 134).

Beyond identifying single genetic variants that each account for 
very little phenotypic variance, we estimated SNP-based heritability 
of the traits. All heritability estimates were significant in the 23andMe 
discovery sample, with the largest estimate for extraversion (H2 = 0.18)  
(Supplementary Table 2). These findings extend those from a previ-
ous heritability analysis of FFM traits (N = 5,011), in which SNP-based 
heritability estimates were significant for neuroticism and openness19. 
As expected, SNP-based heritability estimates were lower than those 
reported in family studies1.

Relationships among personality traits are also of interest. Although 
the FFM traits were derived through factor analysis and were thus 
orthogonal in the original findings, most studies observe some degree 
of phenotypic correlation between traits19. Using 23andMe data, 
we found that neuroticism was inversely correlated with the other 
personality traits, whereas agreeableness, conscientiousness, extra-
version and openness were all positively correlated; all phenotypic 
correlations were highly significant except that between openness 
and conscientiousness (Supplementary Table 3). Genetic correlation  
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Figure 1 Manhattan plots for personality traits in the combined sample  
of 23andMe and GPC data (discovery–stage1 sample). Sample sizes  
were as follows: agreeableness, N = 76,551; conscientiousness,  
N = 76,551; extraversion, N = 122,886; neuroticism, N = 122,867; 
openness, N = 76,581. Number of SNPs: agreeableness, N = 2,165,398; 
conscientiousness, N = 2,166,809; extraversion, N = 6,343,667; 
neuroticism, N = 6,337,541; openness, N = 2,167,320.
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Figure 2 Regional association plot. (a,b) Distribution of −log10(P) of SNPs 
on chr. 8p of the significant SNPs for neuroticism (a) and extraversion 
(b, top) in the combined discovery analysis. The most significant SNPs 
(rs6981523 and rs2164273) are shown in purple; otherwise, the colors 
of the circles denote their correlations (LD r2) with the top SNP. These 
SNPs (LD r2 = 0.5 in LDlink) have opposite  signs in GWAS results for 
neuroticism and extraversion. The opposite signals might be attributable 
to negative phenotypic association between neuroticism and extraversion. 
Gene symbols and locations within the region derived from UCSC Genome 
Browser human hg19 assembly are shown (b, bottom). Regional plots  
with detailed annotation information for significant SNPs are also  
shown in Supplementary Figure 4. 
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to examine whether GWAS signals colocalize with eQTL. COLOC-
estimated posterior probabilities18 (Online Methods) indicated  
that one SNP-associated locus (rs57590327) and its correspond-
ing eQTL (Supplementary Table 1) were probably attributable to a 
common causal variant (posterior probability = 0.76). Another SNP 
(rs216273) showed evidence of independence with eQTL (posterior 
probability = 0.75). For the rest of the SNPs, the posterior probability 
ranged between 0 and 0.45, failing to support any of the specified 
hypotheses. Our analyses did not show consistent evidence for these 
SNPs influencing personality traits through gene expression in the 
brain, but cautious interpretation is warranted owing to the small 
eQTL sample (N = 134).

Beyond identifying single genetic variants that each account for 
very little phenotypic variance, we estimated SNP-based heritability 
of the traits. All heritability estimates were significant in the 23andMe 
discovery sample, with the largest estimate for extraversion (H2 = 0.18)  
(Supplementary Table 2). These findings extend those from a previ-
ous heritability analysis of FFM traits (N = 5,011), in which SNP-based 
heritability estimates were significant for neuroticism and openness19. 
As expected, SNP-based heritability estimates were lower than those 
reported in family studies1.

Relationships among personality traits are also of interest. Although 
the FFM traits were derived through factor analysis and were thus 
orthogonal in the original findings, most studies observe some degree 
of phenotypic correlation between traits19. Using 23andMe data, 
we found that neuroticism was inversely correlated with the other 
personality traits, whereas agreeableness, conscientiousness, extra-
version and openness were all positively correlated; all phenotypic 
correlations were highly significant except that between openness 
and conscientiousness (Supplementary Table 3). Genetic correlation  
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with detailed annotation information for significant SNPs are also  
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to examine whether GWAS signals colocalize with eQTL. COLOC-
estimated posterior probabilities18 (Online Methods) indicated  
that one SNP-associated locus (rs57590327) and its correspond-
ing eQTL (Supplementary Table 1) were probably attributable to a 
common causal variant (posterior probability = 0.76). Another SNP 
(rs216273) showed evidence of independence with eQTL (posterior 
probability = 0.75). For the rest of the SNPs, the posterior probability 
ranged between 0 and 0.45, failing to support any of the specified 
hypotheses. Our analyses did not show consistent evidence for these 
SNPs influencing personality traits through gene expression in the 
brain, but cautious interpretation is warranted owing to the small 
eQTL sample (N = 134).

Beyond identifying single genetic variants that each account for 
very little phenotypic variance, we estimated SNP-based heritability 
of the traits. All heritability estimates were significant in the 23andMe 
discovery sample, with the largest estimate for extraversion (H2 = 0.18)  
(Supplementary Table 2). These findings extend those from a previ-
ous heritability analysis of FFM traits (N = 5,011), in which SNP-based 
heritability estimates were significant for neuroticism and openness19. 
As expected, SNP-based heritability estimates were lower than those 
reported in family studies1.

Relationships among personality traits are also of interest. Although 
the FFM traits were derived through factor analysis and were thus 
orthogonal in the original findings, most studies observe some degree 
of phenotypic correlation between traits19. Using 23andMe data, 
we found that neuroticism was inversely correlated with the other 
personality traits, whereas agreeableness, conscientiousness, extra-
version and openness were all positively correlated; all phenotypic 
correlations were highly significant except that between openness 
and conscientiousness (Supplementary Table 3). Genetic correlation  
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patterns were congruent with phenotypic correlations, but the associa-
tions were more apparent in genetic structure, which reflected shared 
genetic factors contributing to the correlations (Fig. 3a).

A notable feature of personality is its link with a wide range  
of social, mental and physical health outcomes5. High levels of  
neuroticism, extraversion and openness have been associated with 
bipolar disorder20, and high neuroticism has been associated with 
major depression and anxiety21. Low agreeableness has been asso-
ciated with narcissism, Machiavellianism and psychopathy22. In 
addition to phenotypic relationships, twin and GWAS studies have 
demonstrated genetic correlations between personality traits and 
psychiatric disorders3,21,23, though most focus on neuroticism 
(Supplementary Note).

We thus sought to quantify the genetic correlations between the five 
personality traits and six psychiatric disorders from the Psychiatric 
Genomics Consortium (PGC): schizophrenia (N = 17,115), bipolar 
disorder (N = 16,731), major depressive disorder (N = 18,759), ADHD 
(N = 5,422) and autism spectrum disorder (N = 10,263), and from 
the Genetic Consortium for Anorexia Nervosa (N = 17,767) (Online 
Methods and Supplementary Table 2). A pairwise genetic correlation 
matrix (11 × 11) revealed several significant correlations (Fig. 3a and 
Supplementary Table 4). For example, neuroticism was highly corre-
lated with depression, and extraversion with ADHD. To complement 
genetic correlation estimation via LD Score regression9, we compared 
the pattern of GWAS results by assessing whether signs of genetic 
effects were concordant between the top associations among these 
traits and disorders. The results of the sign tests of directional effects 
closely matched the genetic correlations (Supplementary Fig. 2).

Given the moderate and high genetic correlations, we subsequently 
conducted a principal component analysis (PCA) to extract principal 
components of genetic variation (Fig. 3b). We projected all pheno-
types onto a two-dimensional space spanned by the top two principal 
components (PC1 and PC2) of genetic variation to summarize the 
genetic relationships between personality traits and psychiatric disor-
ders. The analysis integrates genomic information with traditionally 
defined phenotypes to better understand basic dimensions of the full 
range of human behavior, from typical to pathological, in line with the 
research strategy of the Research Domain Criteria (RDoC)24.

Our results indicated that openness, bipolar disorder and schizo-
phrenia cluster in the first quadrant (Fig. 3b). Notably, all three share 
phenotypic commonality in that they have been linked to height-
ened creativity and dopamine activity25,26. Most personality traits 
(conscientiousness, agreeableness and extraversion) clustered in the 
second quadrant. Neuroticism and depression were in the fourth 
quadrant. Autism and anorexia nervosa were captured by factors in 
higher dimensions and have relatively low loadings on the first two 
components (as indicated by short arrows on these two dimensions 
in Fig. 3b). Notably, ADHD showed a high genetic correlation with 
extraversion and low correlations with other psychiatric disorders 
(except bipolar disorder), as also shown in hierarchical clustering 
analysis, in which ADHD clustered with personality traits rather than 
psychiatric disorders (Supplementary Fig. 3). This may indicate that 
ADHD, or some ADHD subtypes, represent a variant of extraversion. 
Of note, our ADHD data were from individuals ranging in age from 5 
to 19 years old. Phenotypically, positive emotionality has been linked 
with a subgroup of children with ADHD27. Future genetic studies con-
sidering ADHD heterogeneity (e.g., subtypes and differences between 
child and adult forms) may help characterize its diverse etiologies and 
relationships with personality traits.

Overall, we observed a systematic pattern, with all psychiatric 
disorders showing positive loadings on PC1, and agreeableness and 

conscientiousness with negative loadings. A combination of low agree-
ableness and low conscientiousness is thought to reflect Eysenck’s 
psychoticism trait4. PC2 was closely aligned with the extraversion–
introversion axis. Extraversion has been associated with externalizing 
traits and behavioral activation, and introversion, with internalizing 
traits and behavioral inhibition28,29. Internalizing traits (e.g., neuroti-
cism, depression, anxiety and withdrawal)21 have negative loadings 
on PC2. Externalizing traits are predicted by high extraversion, low 
agreeableness and low conscientiousness29.

These findings provide additional support for shared genetic influ-
ences between personality traits and psychiatric disorders3,21,23 and 
for the idea that personality traits and psychiatric disorders exist on 
a continuum in phenotypic and genomic space5,11. Maladaptive or 
extreme variants of personality may contribute to the persistence of, 
or vulnerability to, psychiatric disorders and comorbidity5,11,21,23. 
Further genomic research in which categorical disease entities are 
viewed as variants of quantitative dimensions in a polygenic frame-
work may help elucidate this issue30.
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Figure 3 Genetic correlations between personality traits (23andMe sample) 
and psychiatric disorders. (a) Heat map illustrating genetic correlations 
between phenotypes. The values in the color squares correspond to genetic 
correlations. Asterisks denote genetic correlations significantly different 
from 0: *P < 0.05; **P < 0.00091 (Bonferroni correction threshold).  
(b) Loading plot of personality traits and psychiatric disorders on the first 
two principal components derived from the genetic correlation matrix 
in a. A small angle between arrows indicates a high correlation between 
variables, and arrows pointing in opposite directions indicate a negative 
correlation in the space of the two principal components.

NATURE GENETICS VOLUME 49 | NUMBER 1 | JANUARY 2017 155

L E T T E R S

patterns were congruent with phenotypic correlations, but the associa-
tions were more apparent in genetic structure, which reflected shared 
genetic factors contributing to the correlations (Fig. 3a).

A notable feature of personality is its link with a wide range  
of social, mental and physical health outcomes5. High levels of  
neuroticism, extraversion and openness have been associated with 
bipolar disorder20, and high neuroticism has been associated with 
major depression and anxiety21. Low agreeableness has been asso-
ciated with narcissism, Machiavellianism and psychopathy22. In 
addition to phenotypic relationships, twin and GWAS studies have 
demonstrated genetic correlations between personality traits and 
psychiatric disorders3,21,23, though most focus on neuroticism 
(Supplementary Note).

We thus sought to quantify the genetic correlations between the five 
personality traits and six psychiatric disorders from the Psychiatric 
Genomics Consortium (PGC): schizophrenia (N = 17,115), bipolar 
disorder (N = 16,731), major depressive disorder (N = 18,759), ADHD 
(N = 5,422) and autism spectrum disorder (N = 10,263), and from 
the Genetic Consortium for Anorexia Nervosa (N = 17,767) (Online 
Methods and Supplementary Table 2). A pairwise genetic correlation 
matrix (11 × 11) revealed several significant correlations (Fig. 3a and 
Supplementary Table 4). For example, neuroticism was highly corre-
lated with depression, and extraversion with ADHD. To complement 
genetic correlation estimation via LD Score regression9, we compared 
the pattern of GWAS results by assessing whether signs of genetic 
effects were concordant between the top associations among these 
traits and disorders. The results of the sign tests of directional effects 
closely matched the genetic correlations (Supplementary Fig. 2).

Given the moderate and high genetic correlations, we subsequently 
conducted a principal component analysis (PCA) to extract principal 
components of genetic variation (Fig. 3b). We projected all pheno-
types onto a two-dimensional space spanned by the top two principal 
components (PC1 and PC2) of genetic variation to summarize the 
genetic relationships between personality traits and psychiatric disor-
ders. The analysis integrates genomic information with traditionally 
defined phenotypes to better understand basic dimensions of the full 
range of human behavior, from typical to pathological, in line with the 
research strategy of the Research Domain Criteria (RDoC)24.

Our results indicated that openness, bipolar disorder and schizo-
phrenia cluster in the first quadrant (Fig. 3b). Notably, all three share 
phenotypic commonality in that they have been linked to height-
ened creativity and dopamine activity25,26. Most personality traits 
(conscientiousness, agreeableness and extraversion) clustered in the 
second quadrant. Neuroticism and depression were in the fourth 
quadrant. Autism and anorexia nervosa were captured by factors in 
higher dimensions and have relatively low loadings on the first two 
components (as indicated by short arrows on these two dimensions 
in Fig. 3b). Notably, ADHD showed a high genetic correlation with 
extraversion and low correlations with other psychiatric disorders 
(except bipolar disorder), as also shown in hierarchical clustering 
analysis, in which ADHD clustered with personality traits rather than 
psychiatric disorders (Supplementary Fig. 3). This may indicate that 
ADHD, or some ADHD subtypes, represent a variant of extraversion. 
Of note, our ADHD data were from individuals ranging in age from 5 
to 19 years old. Phenotypically, positive emotionality has been linked 
with a subgroup of children with ADHD27. Future genetic studies con-
sidering ADHD heterogeneity (e.g., subtypes and differences between 
child and adult forms) may help characterize its diverse etiologies and 
relationships with personality traits.

Overall, we observed a systematic pattern, with all psychiatric 
disorders showing positive loadings on PC1, and agreeableness and 

conscientiousness with negative loadings. A combination of low agree-
ableness and low conscientiousness is thought to reflect Eysenck’s 
psychoticism trait4. PC2 was closely aligned with the extraversion–
introversion axis. Extraversion has been associated with externalizing 
traits and behavioral activation, and introversion, with internalizing 
traits and behavioral inhibition28,29. Internalizing traits (e.g., neuroti-
cism, depression, anxiety and withdrawal)21 have negative loadings 
on PC2. Externalizing traits are predicted by high extraversion, low 
agreeableness and low conscientiousness29.

These findings provide additional support for shared genetic influ-
ences between personality traits and psychiatric disorders3,21,23 and 
for the idea that personality traits and psychiatric disorders exist on 
a continuum in phenotypic and genomic space5,11. Maladaptive or 
extreme variants of personality may contribute to the persistence of, 
or vulnerability to, psychiatric disorders and comorbidity5,11,21,23. 
Further genomic research in which categorical disease entities are 
viewed as variants of quantitative dimensions in a polygenic frame-
work may help elucidate this issue30.
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Figure 3 Genetic correlations between personality traits (23andMe sample) 
and psychiatric disorders. (a) Heat map illustrating genetic correlations 
between phenotypes. The values in the color squares correspond to genetic 
correlations. Asterisks denote genetic correlations significantly different 
from 0: *P < 0.05; **P < 0.00091 (Bonferroni correction threshold).  
(b) Loading plot of personality traits and psychiatric disorders on the first 
two principal components derived from the genetic correlation matrix 
in a. A small angle between arrows indicates a high correlation between 
variables, and arrows pointing in opposite directions indicate a negative 
correlation in the space of the two principal components.
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Genes mirror geography within Europe
John Novembre1,2, Toby Johnson4,5,6, Katarzyna Bryc7, Zoltán Kutalik4,6, Adam R. Boyko7, Adam Auton7,
Amit Indap7, Karen S. King8, Sven Bergmann4,6, Matthew R. Nelson8, Matthew Stephens2,3 & Carlos D. Bustamante7

Understanding the genetic structure of human populations is of
fundamental interest to medical, forensic and anthropological
sciences. Advances in high-throughput genotyping technology
have markedly improved our understanding of global patterns
of human genetic variation and suggest the potential to use large
samples to uncover variation among closely spaced populations1–5.
Here we characterize genetic variation in a sample of 3,000
European individuals genotyped at over half a million variable
DNA sites in the human genome. Despite low average levels of
genetic differentiation among Europeans, we find a close corres-
pondence between genetic and geographic distances; indeed, a
geographical map of Europe arises naturally as an efficient two-
dimensional summary of genetic variation in Europeans. The
results emphasize that when mapping the genetic basis of a disease
phenotype, spurious associations can arise if genetic structure is
not properly accounted for. In addition, the results are relevant to
the prospects of genetic ancestry testing6; an individual’s DNA can
be used to infer their geographic origin with surprising accuracy—
often to within a few hundred kilometres.

Recent studies suggest that by combining high-throughput geno-
typing technologies with dense geographic samples one can shed light
on unanswered questions regarding human population structure1–5.
For instance, it is not clear to what extent populations within con-
tinental regions exist as discrete genetic clusters versus as a genetic
continuum, nor how precisely one can assign an individual to a
geographic location on the basis of their genetic information alone.

To investigate these questions, we surveyed genetic variation in a
sample of 3,192 European individuals collected and genotyped as
part of the larger Population Reference Sample (POPRES) project7.
Individuals were genotyped at 500,568 loci using the Affymetrix 500K
single nucleotide polymorphism (SNP) chip. When available, we
used the country of origin of each individual’s grandparents to deter-
mine the geographic location that best represents each individual’s
ancestry, otherwise we used the self-reported country of birth (see
Methods and Supplementary Tables 1 and 2). After removing SNPs
with low-quality scores, we applied various stringency criteria to
avoid sampling individuals from outside of Europe, to create more
even sample sizes across Europe, to exclude individuals with grand-
parental ancestry from more than location, and to avoid potential
complications of SNPs in high linkage disequilibrium (see Methods
and Supplementary Table 3). Although our main result holds even
when we relax nearly all of these stringency criteria, we focus our
analyses on genotype data from 197,146 loci in 1,387 individuals
(Supplementary Table 2), for whom we have high confidence of
individual origins.

We used principal components analysis (PCA; ref. 8) to produce a
two-dimensional visual summary of the observed genetic variation.

The resulting figure bears a notable resemblance to a geographic map
of Europe (Fig. 1a). Individuals from the same geographic region
cluster together and major populations are distinguishable.
Geographically adjacent populations typically abut each other, and
recognizable geographical features of Europe such as the Iberian
peninsula, the Italian peninsula, southeastern Europe, Cyprus and
Turkey are apparent. The data reveal structure even among French-,
German- and Italian-speaking groups within Switzerland (Fig. 1b),
and between Ireland and the United Kingdom (Fig. 1a, IE and GB).
Within some countries individuals are strongly differentiated along
the principal component (PC) axes, suggesting that in some cases the
resolution of the genetic data may exceed that of the available geo-
graphic information.

When we quantitatively compare the geographic position of coun-
tries with their PC-based genetic positions, we observe few pro-
minent differences between the two (Supplementary Fig. 1), and
those that exist can be explained either by small sample sizes (for
example, Slovakia (SK)) or by the coarseness of our geographic data
(a problem for large countries, for example, Russia (RU)); see
Supplementary Information for more detail. Our method also iden-
tifies a few individuals who exhibit large differences between their
genetic and geographic positions (Supplementary Fig. 2). These indi-
viduals may have mis-specified ancestral origins or be recent
migrants. In addition, although the sample used here is unlikely to
include many members of smaller genetically isolated populations
that exist within countries (for example, Basque residing in Spain or
France, Orcadians in Scotland, or individuals of Jewish ancestry), in
rare cases outlying individuals could reflect membership of such
groups. For example, a small set of Italian individuals cluster ‘south-
west’ of the main Italian cluster and one might speculate they are
individuals of insular Italian origin (for example, Sardinia or Sicily).

The overall geographic pattern in Fig. 1a fits the theoretical
expectation for models in which genetic similarity decays with dis-
tance in a two-dimensional habitat, as opposed to expectations for
models involving discrete well-differentiated populations. Indeed, in
these data genetic correlation between pairs of individuals tends to
decay with distance (Fig. 1c). For spatially structured data, theory
predicts the top two principal components (PCs 1 and 2) to be
correlated with perpendicular geographic axes9, which is what we
observe (r2 5 0.71 for PC1 versus latitude; r2 5 0.72 for PC2 versus
longitude; after rotation, r2 5 0.77 for ‘north–south’ in PC-space
versus latitude, and r2 5 0.78 for ‘east–west’ in PC-space versus lon-
gitude). In contrast, when there are K discrete populations sampled,
one expects discrete clusters to be separated out along K 2 1 of the
top PCs8. In our analysis, neither the first two PCs, nor subsequent
PCs, separate clusters as one would expect for a set of discrete, well-
differentiated populations (see ref. 8 for examples).
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue 5 4.09, second eigenvalue 5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n . 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses a well-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
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among Europeans (for example, refs 3–5, 11). A crucial part is also
played by spatial variation in phenotype. To examine this, we simu-
lated genome-wide association data for quantitative trait phenotypes
with varying degrees of linear latitudinal or longitudinal trends
(Supplementary Fig. 4). Even for phenotypes modestly correlated
with geography (for example, $5% of variance explained by latitude
or longitude) the uncorrected P-value distribution shows a clear
excess of small values, suggesting that population structure correc-
tion may be important even in seemingly closely related populations
such as Europeans. Note that many factors, including sample size and
distribution of sampling locations, will influence the effects of strati-
fication on P-value distributions, and so these results should be con-
sidered only as illustrative of the settings in which stratification could
become a problem in European samples.

In all our simulations, use of a PC-based correction12,14 adequately
controlled for P-value inflation (Supplementary Fig. 4). The success of
PCA-based correction is not unexpected here, because the PCs are

excellent predictors of latitude and longitude, and we used only linear
functions of latitude and longitude to determine the means of our
simulated phenotypes. For real phenotypes, higher order functions of
PC1 and PC2 and/or additional PCs might be necessary to correct for
more complex spatial variation in phenotype. We speculate that at the
geographic scale of many association studies carried out so far, many
phenotypes are relatively uncorrelated with geography, and that this
may explain why in many cases PC-based correction has had little
impact in practice3,13. For phenotypes that are more strongly spatially
structured within a sample (for example, height11,15,16), spurious asso-
ciations due to population stratification should be more of a concern.

Although broad correlations between PCs and geography have been
observed previously3–5,17,18 only the large number of loci and dense
geographic sampling of individuals used here reveal the clear map-like
structure to European genetic variation. Because at any one SNP the
average level of differentiation across Europe is small (average
FST 5 0.004 between geographic regions; FST is a measure of differ-
entiation between populations that takes values of 0 when there is no
differentiation and one when there is maximal differentiation19), it is
the combined information across many loci and many individuals
that reveals fine-scale population structure in this sample.

An important consideration in interpreting our analyses is that, as
a result of ascertainment bias20,21, current SNP genotyping platforms
under-represent variation at low-frequency alleles. Low-frequency
alleles tend to be the result of a recent mutation and are expected
to geographically cluster around the location at which the mutation
first arose; hence, they can be highly informative about the fine-scale
population structure (for example, ref. 22). In addition, the PCA-
based methods used here are based on genotypic patterns of variation
and do not take advantage of signatures of population structure that
are contained in patterns of haplotype variation1,23–25. Soon-to-be-
available whole-genome re-sequencing will give us access to inform-
ative low-frequency alleles, and further statistical method develop-
ment will allow us to leverage patterns of haplotype variation. The
prospect of these developments suggests the geographic resolution
presented here is only a lower bound on the performance possible in
the near future. Thus, our results provide an important insight: the
power to detect subtle population structure, and in turn the promise
of genetic ancestry tests, may be more substantial than previously
imagined.

METHODS SUMMARY
The sample of European individuals used here was assembled and genotyped as
part of the larger POPRES project7. Genotyping was carried out using the
Affymetrix GeneChip Human Mapping 500K Array Set. No significant differ-
entiation was observed between individuals collected and/or genotyped at dif-
ferent times (analysis of variance, ANOVA, P . 0.05).

PCA was carried out using the smartpca program8,12. Before running PCA, we
removed SNPs that showed evidence of high pairwise linkage disequilibrium as
well as unique genomic regions (such as large polymorphic inversions) that
might obscure genome-wide patterns of population structure. In addition, an
initial PCA run was used to remove extreme genetic outliers.

When comparing the PC results to geography, we assigned each individual a
location—typically the geographic centre of their corresponding population
(Supplementary Table 3). The rotation of axes used in Fig. 1 is 16 degrees coun-
terclockwise and was determined by finding the angle that maximizes the
summed correlation of the median PC1 and PC2 values with the latitude and
longitude of each country.

The new assignment method used here is based on independent linear models
for latitude and longitude where each is predicted jointly by PC1 and PC2,
including quadratic terms and an interaction term. To assess performance, we
used leave-one-out cross-validation and adjusted for unequal sample sizes (for
example, we weigh each population equally when computing the mean predic-
tion accuracy).

For the genome-wide association simulations, we simulated each individual’s
phenotype as having a mean determined by his or her geographic position and
then simulated Gaussian distributed residual variation to obtain a phenotype
with a fixed proportion of variance explained by geographic position. To per-
form the association test with PC-based correction, we used multiple linear

a

400 km

b

Prediction accuracy

1,200–2,500 km
800–1,200 km
400–800 km
0–400 km

1.0

0.8

0.6

0.4

0.2

0

A
ve

ra
ge

A
us

tr
ia

 [A
T]

B
el

gi
um

 [B
E]

B
os

ni
a-

H
er

ze
go

vi
na

 [B
A

]
C

ro
at

ia
 [H

R
]

C
ze

ch
 R

ep
ub

lic
 [C

Z]
Fr

an
ce

 [F
R

]
G

er
m

an
y 

[D
E]

G
re

ec
e 

[G
R

]
H

un
ga

ry
 [H

U
]

Ire
la

nd
 [I

E]
Ita

ly
 [I

T]
N

et
he

rla
nd

s 
[N

L]
P

ol
an

d 
[P

L]
P

or
tu

ga
l [

P
T]

R
om

an
ia

 [R
O

]
S

pa
in

 [E
S

]
S

w
ed

en
 [S

E]
S

w
is

s-
Fr

en
ch

 [C
H

-F
]

S
w

is
s-

G
er

m
an

 [C
H

-G
]

S
w

is
s-

Ita
lia

n 
[C

H
-I

]
U

ni
te

d 
K

in
gd

om
 [G

B
]

Yu
go

sl
av

ia
 [Y

G
]

Figure 2 | Performance of assignment method. a, Predicted locations for
each of 1,387 individuals based on leave-one-out cross validation and the
continuous assignment method. Small coloured labels (for definitions, see
Fig. 1 legend, except here CH-I, CH-F, and CH-G denote Swiss individuals
who speak Italian, French, or German respectively) represent individual
assignments. Coloured points denote the locations used to train the
assignment method. b, Distribution of prediction accuracy by country.
Distances are measured between the population assigned by the discrete
assignment method and the geographic origin of the individual. The average
is taken of the proportions across populations and each population is given
equal weight. The panel shows results for populations with greater than six
individuals; performance decreases for populations with smaller sample
sizes (Supplementary Fig. 3).
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Genomic insights into the peopling of the  
Southwest Pacific
Pontus Skoglund1,2,3, Cosimo Posth4,5, Kendra Sirak6,7, Matthew Spriggs8,9, Frederique Valentin10, Stuart Bedford9,11, 
Geoffrey R. Clark11, Christian Reepmeyer12, Fiona Petchey13, Daniel Fernandes6,14, Qiaomei Fu1,15,16, Eadaoin Harney1,2, 
Mark Lipson1, Swapan Mallick1,2, Mario Novak6,17, Nadin Rohland1, Kristin Stewardson1,2,18, Syafiq Abdullah19,  
Murray P. Cox20, Françoise R. Friedlaender21, Jonathan S. Friedlaender22, Toomas Kivisild23,24, George Koki25, 
Pradiptajati Kusuma26, D. Andrew Merriwether27, Francois-X. Ricaut28, Joseph T. S. Wee29, Nick Patterson2,  
Johannes Krause5, Ron Pinhasi6§ & David Reich1,2,18§

The appearance of people associated with the Lapita culture in 
the South Pacific around 3,000 years ago1 marked the beginning 
of the last major human dispersal to unpopulated lands. However, 
the relationship of these pioneers to the long-established Papuan 
people of the New Guinea region is unclear. Here we present 
genome-wide ancient DNA data from three individuals from 
Vanuatu (about 3,100–2,700 years before present) and one from 
Tonga (about 2,700–2,300 years before present), and analyse them 
with data from 778 present-day East Asians and Oceanians. Today, 
indigenous people of the South Pacific harbour a mixture of ancestry 
from Papuans and a population of East Asian origin that no longer 
exists in unmixed form, but is a match to the ancient individuals. 
Most analyses have interpreted the minimum of twenty-five per 
cent Papuan ancestry in the region today as evidence that the 
first humans to reach Remote Oceania, including Polynesia, were 
derived from population mixtures near New Guinea, before their 
further expansion into Remote Oceania2–5. However, our finding 
that the ancient individuals had little to no Papuan ancestry implies 
that later human population movements spread Papuan ancestry 
through the South Pacific after the first peopling of the islands.

Pacific islanders today derive from a mixture of two highly divergent 
ancestral populations3. The first ancestral modern human population 
arrived in island southeast Asia more than 40,000 years before present 
(bp), and contributed to the ancestry of both indigenous Australians 
and Papuans, and hence to other Pacific islanders4. The second ances-
tral population is more closely related to mainland East Asians4, and 
is not found in unadmixed form today. The first humans to reach 
Remote Oceania—a term we use to refer to the region unoccupied 
before approximately 3,000 bp beyond the main Solomon Islands and, 
in this case, excluding Micronesia—were associated with the Lapita 
culture, which existed between 3,450–3,250 and 2,700–2,500 bp. These 
people spread into Remote Oceania using the first boats capable of 
long-distance sea travel and introduced new domesticated animals and 
plants, and their successors reached the most isolated islands of the 
eastern and southern Pacific by 1,000–700 bp6. Several hypotheses have 

been proposed to explain why present-day indigenous people of Near 
Oceania (New Guinea, the Bismarck Islands, and the Solomon Islands 
area) and Remote Oceania have ancestry both from Papuans and from 
populations of ultimate East Asian origin. In one set of models that 
has been favoured by recent genetic studies3–5,7, the mixture occurred 
at around 3,000 bp, during the expansion of populations of East Asian 
origin through the New Guinea region8. In the other set of models, 
the population of ultimate East Asian origin initially mixed little with 
Papuans9, and thus later gene exchanges account for the ubiquitous 
Papuan ancestry today2,10.

We obtained genome-wide ancient DNA data from three individ-
uals from Teouma, an archaeological site on Efate island, Vanuatu 
(Supplementary Information section 1), which were all directly radio-
carbon dated to between 3,110 and 2,740 bp, an interval that is chron-
ologically part of the Lapita period (Extended Data Table 1). We also 
obtained genome-wide ancient DNA data from an individual from the 
Talasiu site on Tongatapu island, Tonga, directly radiocarbon dated 
to 2,680–2,340 bp, a period spanning the late Lapita and immedi-
ately post-Lapita period (Supplementary Information section 2 and 
Extended Data Table 1). In dedicated clean rooms, we prepared powder  
from petrous bones11, extracted DNA12, and prepared up to four double- 
stranded libraries from each extract13. We enriched the libraries for 
1.24 million targeted single nucleotide polymorphisms (SNPs)14, 
sequenced the products, and represented each individual by a single 
randomly drawn sequence for each SNP. This procedure resulted in 
139,461–231,944 SNPs that were covered at least once in each of the 
individuals. The low ratio of sequences aligning to Y-chromosome  
targets compared to targets on other chromosomes15 reveals that all 
four individuals are females (Extended Data Table 1). We obtained 
three mitochondrial DNA sequences from Vanuatu and all were  
haplogroup B4a1a1a, the classic ‘Polynesian motif ’16.

Multiple features of the data suggest that the DNA was authentic 
and minimally contaminated. First, in all individuals, around 40% of 
all sites that are cytosines in the human reference sequence appear as 
thymines in the terminal nucleotide, as expected for genuine ancient 
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from Australians), and found that it was maximized when Test was 
the ancient Vanuatu or Tonga individuals (Extended Data Fig. 2b), 
as expected if a population related to them was the true source. We 
conclude that the non-Papuan ancestry that is ubiquitous in Oceania 
is derived from a population related to the ancient individuals we ana-
lysed, and that this ancestry reached uninhabited islands in Remote 
Oceania with little or possibly no mixture with Papuans. We call the 
population of which both the ancient Vanuatu and Tongan individuals 
were a part the ‘First Remote Oceanians’ and find that the ancestry frac-
tion from this population is the single most important factor shaping 
genetic variation among Pacific islanders, accounting for most varia-
tion in measurements including genetic diversity (Pearson’s R =  0.86, 
P =  2 ×  10−12 for 42 non-Polynesian groups; Extended Data Fig. 2) and 
the proportion of archaic Denisovan ancestry (R =  − 0.96, P <  10−16 for 
all 56 Oceanian groups; Fig. 2).

Our evidence that early and geographically diverse Remote Oceanian 
individuals had little or no Papuan ancestry contradicts models in 
which there were significant Papuan contributions to Lapita people 
before their dispersal into Remote Oceania3–5. Instead, our results 
show that the Papuan genetic signature appeared in many Remote 
Oceanian populations only subsequent to initial settlement. To gain 
further insight into when the Papuan ancestry may have become ubiq-
uitous in Remote Oceanians, we leveraged the fact that chromosome 
segments from ancestral populations break up at a known rate owing 
to recombination and that the length distribution of these segments 
translates to a date of mixture20. We estimate dates of approximately 
50–80 generations ago using ALDER21, or 1,500–2,300 bp assuming 
28.1 years (see Methods) per generation22 (Fig. 2d and Extended Data 
Fig. 3). We combined the statistical error of the genetic estimate and the 
uncertainty about the generation interval (Methods), and obtained a 
95% confidence interval of 1,239–1,927 bp for a pool of Polynesians, all 
of whom have similar Papuan ancestry proportions. This finding that 
Papuan–First Remote Oceanian mixture occurred long after the end of 
the Lapita period implies that the Polynesian ancestral population was 
not fully formed at that time, although we note that alternative methods 
for dating Papuan admixture in Remote Oceanians arrived at older 
dates4,23–25. However, our ALDER dates are supported by direct ancient 
DNA evidence, as the Tongan individual at 2,680–2,340 bp carried little 
or no Papuan ancestry, providing unambiguous confirmation that the 
ancestral population of Polynesians was not fully formed or widespread 
by the end of the Lapita period.

We used qpGraph to explore models of population separation 
and mixture that might accommodate the ancient DNA data26 
(Supplementary Information section 3). We obtained fits using models  
in which Polynesians today are mixtures of First Remote Oceanians 
and a Papuan population related to Highland New Guineans (Fig. 3a). 
We also obtained consistent findings using TreeMix27 (Extended Data 
Fig. 4). In Fig. 3 we show the best fitting model, which suggests that the 
ancient individuals from Vanuatu and Tonga descended from an ances-
tral (presumably Lapita) population that separated earlier from the 
population that is the primary component in present-day Polynesians. 
This implies that not just Papuan ancestry but also deeply branching 
First Remote Oceanian ancestry was introduced to Remote Oceania 
through movement of people after the time of the ancient individuals. 
Thus, the minimum 25% Papuan ancestry seen in present-day Remote 
Oceanians is a conservative underestimate of the later population  
displacement. It is unlikely that there was 100% replacement, however,  
as we observed weak excess affinity of present-day Tongans to the 
ancient Tongan individuals in symmetry tests (see Methods). More 
deeply in time, our modelling indicates that Philippine populations 
(Kankanaey) are the closest outgroup to the First Remote Oceanians, 
indigenous Taiwanese (Atayal) second closest, and mainland south-
east Asians such as the Dai most remote, consistent with models of 
population movement along a route from Taiwan to the Philippines to 
Near Oceania to Remote Oceania28. We were surprised that we could 
not fit Australians as outgroups to New Guinean Highlanders and the 

Papuan ancestry in Polynesians (Extended Data Fig. 5). However, we 
could fit Australians as deriving from a mixture of an ancient Australian 
lineage and a Papuan lineage from the same group that expanded into 
Polynesia. This is plausible if there was continuing gene flow between 
New Guinea and Australia. Another parsimonious model is that the 
ancestry in present-day Polynesians is not all Papuan, but a Papuan–
Australian mix.

Previous studies of mitochondrial DNA and Y chromosomes sug-
gested that present-day people of the South Pacific harbour more East 
Asian ancestry from female than from male ancestors3. Our genome-
wide analyses confirm a significant excess of First Remote Oceanian 
ancestry on the X chromosome compared to the autosomes (Z scores 
up to 10) (Fig. 2b). Females carry two-thirds of the X chromosomes in 

a b

c

d

e

Early Lapita

96
60

277214

66%

74

Yoruba

046
16

0

Altai

0

34%
98%

2%138

0

Denisovan

64

3%

77

414

6

Dai

555

Onge

93

1

Atayal

2697%

29

Kankanaey

22

6 7

75%

59

15

25%

Tongan

11

TongaVanuatu

Taiwan

Phillippines

Bismarck
archipelago

New
Guinea

Australia

First people in
Remote Oceania

~3,000 BP

Mixture near
New Guinea

Later gene flow
brings Papuan ancestry to

Remote Oceania

First people in
Near Oceania

>40,000 BP

(Taiwan)

(Philippines)

New Guinea
Highlanders

Lapita
Vanuatu Lapita

Tonga

Figure 3 | A model of population history. a, A model of population 
relationships that fits allele frequency patterns (all empirical f-statistics 
within 3 standard errors of expectation). Branch lengths are shown in 
units of FST ×  1,000. Admixture edges show mixture proportions. Altai, 
the Altai Neandertal genome. b, A model of population movements more 
than 40,000 years ago in which modern humans arrived in the Australia–
New Guinea region (blue shading) and mixed with archaic Denisovans 
(brown arrow). c, A model of events before 3,000 years ago, in which the 
First Remote Oceanian population formed by spread of a population of 
ultimate East Asian origin to a region including Vanuatu and Tonga, and 
experienced little or no mixture with the Papuans they encountered along 
the journey (red shading). Note that geographic routes are speculative.  
d, A model of populations of mixed Papuan–First Remote Oceanian 
ancestry in Near Oceania less than 3,000 years ago in a patchwork of 
islands with different proportions of First Remote Oceanian ancestry  
(pink shading). e, A model of secondary expansion of admixed populations 
bringing Papuan ancestry into Remote Oceania, which was still not 
complete in Tonga by the date of the Talasiu individual at 2,680–2,340 bp.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

LETTER RESEARCH

2 7  O C T O B E R  2 0 1 6  |  V O L  5 3 8  |  N A T U R E  |  5 1 1

DNA (Extended Data Fig. 1a). Second, when we carried out principal  
component analysis (PCA; Fig. 1) of 778 present-day people from 83 
East Asian and Oceanian populations genotyped at 621,799 SNPs (of 
which 356 individuals from 38 groups were newly genotyped for this 
study; Extended Data Table 2) and projected the ancient individuals, 
we found that all clustered tightly with each other and with data from 
the same individuals restricting to sequences with cytosine-to-thymine 
changes at the terminal nucleotide (these sequences are unlikely to be 
contaminants17,18) (Extended Data Fig. 1b). Third, the cluster of ancient 
individuals does not overlap with present-day populations, indicating 
that the data are from a population that is not present in unmixed form 
today (Fig. 1). The distinctiveness of the ancient individuals is also 
highlighted by their high differentiation from all present-day groups 
(0.05 <  FST <  0.26; between all modern individuals and the ancient 
Vanuatu individuals, using the statistic FST, which compares within- 
and between-group squared allele frequency differences) (Extended 
Data Table 3).

The ancient Vanuatu and Tongan individuals are not shifted in the 
PCA in the direction of Papuan ancestry, in contrast to all present-day 

Remote Oceanians. In this respect, they are similar to indigenous 
Taiwanese populations such as the Ami and Atayal as well as to pop-
ulations from the Philippines such as the Kankanaey, who have no 
detectable Papuan ancestry (Fig. 1). To test whether the ancient indi-
viduals had any evidence of Papuan ancestry, we used the qpWave/
qpAdm software (Methods) to analyse allele frequency correlation 
statistics19. The results were consistent with the ancient individuals 
and the Taiwanese Ami having descended from a common ancestral 
population to the exclusion of 14 worldwide outgroups (P >  0.05 for 
the ancient individuals from both Vanuatu and Tonga). We estimate 
the possible range of Papuan ancestry in the Vanuatu individuals to 
be 0–11% and in the Tongan individual to be 0–17% (99% confidence 
intervals truncated at zero), which does not overlap the point estimates 
of at least 25% Papuan ancestry in all present-day Oceanians (Fig. 2a). 
To test the hypothesis that the ancient Remote Oceanian individuals 
might be from the source population of the non-Papuan ancestry in 
Oceanians today, we computed the statistic f4(Africa, Test; Australian, 
Polynesian), which evaluates the degree of allele sharing of a candi-
date Test population with Polynesians (at sites where Polynesians differ 
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Honeybee	gene	expression
Honeybees	show	division	of	labor (common	in	social	insects)
◦ Young	worker	bees	care	for	broods	("nursing")	and	transition	to	foraging	at	2-
3	weeks	

◦ Change	is	hormonally	determined

Studied	72	bees	with	108	microarrays	=	high	dimensional	data

Genomic dissection of behavioral maturation
in the honey bee
Charles W. Whitfield*†‡, Yehuda Ben-Shahar§¶, Charles Brillet!, Isabelle Leoncini!, Didier Crauser!,
Yves LeConte!, Sandra Rodriguez-Zas*†‡**, and Gene E. Robinson*†‡††

Departments of *Entomology and **Animal Science, †Neuroscience Program, and ‡Institute for Genomic Biology, University of Illinois at
Urbana–Champaign, Urbana, IL 61801; §Howard Hughes Medical Institute, ¶University of Iowa College of Medicine, Iowa City, IA 52242;
and !Laboratoire Biologie et Protection de l’Abeille, Ecologie des Invertébrés, Unité Mixte de Recherche, Institut National de la Recherche
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Honey bees undergo an age-related, socially regulated transition
from working in the hive to foraging that has been previously
associated with changes in the expression of thousands of genes
in the brain. To understand the meaning of these changes, we
conducted microarray analyses to examine the following: (i) the
ontogeny of gene expression preceding the onset of foraging, (ii)
the effects of physiological and genetic factors that influence this
behavioral transition, and (iii) the effects of foraging experience.
Although >85% of !5,500 genes showed brain differences, prin-
cipal component analysis revealed discrete influences of age,
behavior, genotype, environment, and experience. Young bees not
yet competent to forage showed extensive, age-related expression
changes, essentially complete by 8 days of age, coinciding with
previously described structural brain changes. Subsequent changes
were not age-related but were largely related to effects of juvenile
hormone (JH), suggesting that the increase in JH that influences the
hive bee–forager transition may cause many of these changes.
Other treatments that also influence the onset age of foraging
induced many changes but with little overlap, suggesting that
multiple pathways affect behavioral maturation. Subspecies dif-
ferences in onset age of foraging were correlated with differences
in JH and JH-target gene expression, suggesting that this endocrine
system mediates the genetic differences. We also used this multi-
factorial approach to identify candidate genes for behavioral
maturation. This successful dissection of gene expression indicates
that, for social behavior, gene expression in the brain can provide
a robust indicator of the interaction between hereditary and
environmental information.

The honey bee, Apis mellifera, is one of the model organisms
being used to achieve a comprehensive understanding of social

life in molecular terms: how social life evolved, how it is governed,
and how it influences all aspects of genome structure, genome
activity, and organismal function (1). Honey bees offer complex but
experimentally accessible social behavior, a compact and well
studied brain, and a sequenced genome that provides the founda-
tion for ever-increasing genomic resources.

Honey bees, like many species of social insects, display a
division of labor among colony members that is based on
behavioral specializations associated with age (2). Adult worker
honey bees perform a series of tasks in the hive when they are
young (such as brood care or ‘‘nursing’’) and, at !2–3 weeks of
age, shift to foraging for nectar and pollen outside the hive. The
transition to foraging involves changes in endocrine activity,
metabolism, circadian clock activity, brain chemistry, brain
structure, and brain gene expression (3).

The pace of behavioral maturation in honey bees is not rigid,
because the onset age of foraging depends on the needs of the
colony. Pheromones and other social cues mediate this behavioral
ontogeny and affect foraging onset (4). These cues are thought to
act directly or indirectly on physiological factors including juvenile
hormone (JH) (5, 6) and molecular pathways associated with the

foraging and malvolio genes, which are among the presumably many
genes that play a causal role in honey bee behavioral maturation (7,
8). Variation in the pace of behavioral ontogeny in honey bees also
has a genotypic component (9–11).

Microarray analysis is being used to gain a broader appreciation
of the genes and molecular pathways involved in age-related
division of labor in honey bee colonies (12–15). Nurses and foragers
show differences in brain mRNA abundance in approximately
one-third of the !5,500 genes analyzed (estimated to represent
!40% of the genes in the bee genome) (12).

To understand the meaning of these changes, we conducted
microarray analyses of the bee brain to examine the following: (i)
the ontogeny of gene expression before the onset of foraging, (ii) the
effects of genetic and physiological factors that influence the age at
onset of foraging, and (iii) the effects of foraging experience. First,
we show how multiple overlapping influences on brain gene ex-
pression can be decomposed into discrete effects, even under
naturalistic, free-flying conditions in which bees exhibit typical
behavior. Second, we use these results in conjunction with manip-
ulative experiments to test two hypotheses: (i) behavior-associated
differences in brain gene expression are related to both upstream
effectors of behavior (such as JH) and downstream effects of
foraging activity; and (ii) natural genetic differences in brain gene
expression between subspecies are related, at least in part, to
differences in upstream effectors of behavior. Third, we use Gene
Ontology (GO) analyses to identify biological processes that might
be particularly prominent in honey bee behavioral maturation.
Fourth, we show how results of these analyses provide a set of
candidate genes for socially mediated and genetic differences in
behavior.

Results
Brain expression profiles were analyzed by using microarrays
derived from honey bee brain ESTs (16); enhanced annotation
was provided by results from the honey bee genome project (17).
For experiments 1–3, a total of 5,736, 5,559, and 5,637 genes,
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PCA	on	gene	expression

respectively, passed quality criteria and were analyzed (see
Methods). We used mixed-model ANOVA (18, 19) to determine
the number of genes showing differential expression (Table 1).
Unless otherwise specified, P ! 0.001 was used to denote
statistical significance when all genes were tested, leading to an
expectation of fewer than six false positives per test.

Additional analyses used a set of marker genes, which were
shown (12) to be the best 100 genes on the microarray for classifying
brain expression profiles of individual bees as nurse or forager.
Expression differences for these genes are associated with behavior
(either nursing or foraging) and not age (12). We compared the
previously determined forager!nurse brain gene expression ratios
from this set with ratios for these same genes in the following
experiments to determine whether particular comparisons (age,
genotype, and treatment) reveal patterns of expression that are
more forager-like, more nurse-like, or dissimilar to either.

Experiment 1: Age-Related, Behavior-Related, and Genetic Differ-
ences in Brain Gene Expression. We studied 72 individual bees from
two subspecies of European honey bees (A. m. ligustica and A. m.
mellifera) that differ in the age at onset of foraging (early and late,
respectively; ref. 10 and Fig. 5, which is published as supporting

information on the PNAS web site). Bees were cofostered in the
same ‘‘host’’ colonies in the field (one ligustica and one mellifera)
and collected at different ages. We generated gene expression
profiles for the 72 dissected bee brains using 108 microarrays.

Expression differences in these brains were extensive. There were
significant effects of ontogeny (77% of genes), subspecies (29%),
colony (6%), and interactions between these factors (1–4%) (Table
1). Eighty-five percent differed due to at least one of these factors,
and 25% differed due to more than one factor.

Although the experiment involved free-flying bees, presumably
subject to many influences in the colony and external environment,
principal component analysis (PCA) revealed that 65% of variation
could be explained by as few as three principal components (PCs)
(Fig. 1A; "80% was explained by nine PCs; and see Table 4, which
is published as supporting information on the PNAS web site).
These results indicate that a small number of factors (either
controlled or uncontrolled variables) can account for most indi-
vidual differences in brain gene expression. Analysis of PCs re-
vealed discrete gene expression ‘‘axes’’ that were associated with
age, behavior, genotype, and host colony (Fig. 1 B and C and
Table 4).

Differences in brain gene expression reflected in PC1 and -2 (Fig.
1B) reveal two distinct axes. The first axis, associated with prefor-
aging maturation, is indicated by three PCA-generated age clusters:
newly eclosed bees (cluster a), 4-day-old hive bees (cluster b), and
!8-day-old hive bees (cluster c). Consistent with the PCA results,
t tests showed the most extensive gene expression differences
between newly eclosed bees and 4-day-olds (1,991 genes), fewer
differences between 4- and 8-day-olds (590 genes), and fewer still
between subsequent age groups (Table 1; !8-day-old age groups
showed no significant differences for PC1 and -2; Table 4). These
results indicate that early age-related changes in brain gene expres-
sion are essentially complete by 8 days of age.

The second axis revealed by PC1 and -2 was associated with
differences between hive bees (!8-day-old) and foragers (Fig. 1B,
cluster d; 2,965 genes in t test; Table 1). These differences were
highly correlated with differences between age-matched nurses and
foragers (r # 0.91 for the behavior marker genes; P # 3.6 $ 10%38;

Table 1. Number of genes showing significant expression
differences in the honey bee brain as a function of age,
behavioral, genetic, environmental, and physiological
factors (experiments 1–3)

Factors P ! 0.05 P ! 0.001 P ! 10%6 5% FDR*

Field colonies
Age!behavior† (A) 5,275 4,477 3,230 5,258
Subspecies‡ (S) 2,943 1,637 692 2,576
Colony§ (C) 1,501 335 34 679
A $ S 708 68 2 39
A $ C 1,124 204 24 283
S $ C 1,092 198 13 276

Age!behavior contrasts (t tests)
d1 vs. d4 3,280 1,991 992 2,991
d4 vs. d8 2,113 590 44 1,320
d8 vs. d12 937 84 0 50
d12 vs. d17 531 21 0 0
d17 vs. d17F 3,831 2,414 937 3,627
d1 vs. d17F 4,578 3,745 2,749 4,516
Preforaging maturation [d1

vs. (d8, d12, and d17)]
4,093 3,014 1,887 3,957

Hive-bee-to-forager [(d8, d12,
and d17) vs. d17F]

4,088 2,965 1,559 3,970

Treatments in laboratory cages¶

Methoprene 1,587 481 95 894
Manganese 2,539 509 42 1,594
cGMP 1,543 461 84 827
cAMP 999 129 11 151
cGMP vs. cAMP 1,307 327 40 584

Experience deprivation"

Hive-restricted vs. F 129 16** 0 2

Gene lists are available at http:!!stagbeetle.animal.uiuc.edu!papers!
PNAS.html. F, forager.
*Gene lists estimated to contain 5% false positives by using the false-discovery
rate (FDR) step-up method (19).

†Focal bees were from six age!behavior groups: 0- to 1-h after eclosion (d1),
bees from the center of the colony (brood area) at 4, 8, 12, and 17 days of age
(d4, d8, d12, and d17), and 16- or 17-day-old foragers (d17F).

‡Focal bees were from two subspecies: A. m. ligustica and A. m. mellifera.
§Focal bees were cofostered in two host colonies.
¶All tests were contrasts (t tests) between treatment and vehicle control,
except cGMP vs. cAMP.

"One-tailed t test. Null hypothesis is that hive-restricted vs. F differences in gene
expression are not in the same direction as d8, d12, and d17 vs. F differences; only
genes significant in the latter contrast at P ! 0.001 were considered.
**A total of 17 genes were significant using two-tailed test with all genes.

Fig. 1. Division of labor in honey bee colonies and brain gene expression:
age-related, behavior-related, and genetic differences. PCA using brain gene
expression measurements for all 5,736 genes from all 72 bees in experiment 1
was performed. (A) Cumulative variance of PCs. For randomized data, gene
expression levels were shuffled among genes (within sample). (B and C)
Individual bees are plotted as a function of PC1 and PC2 (B) or PC1 and PC3 (C).
Age!behavior group and subspecies are indicated in the key. See Table 4 for
PCs 1–9.
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respectively, passed quality criteria and were analyzed (see
Methods). We used mixed-model ANOVA (18, 19) to determine
the number of genes showing differential expression (Table 1).
Unless otherwise specified, P ! 0.001 was used to denote
statistical significance when all genes were tested, leading to an
expectation of fewer than six false positives per test.
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vs. (d8, d12, and d17)]
4,093 3,014 1,887 3,957

Hive-bee-to-forager [(d8, d12,
and d17) vs. d17F]

4,088 2,965 1,559 3,970

Treatments in laboratory cages¶

Methoprene 1,587 481 95 894
Manganese 2,539 509 42 1,594
cGMP 1,543 461 84 827
cAMP 999 129 11 151
cGMP vs. cAMP 1,307 327 40 584

Experience deprivation"

Hive-restricted vs. F 129 16** 0 2

Gene lists are available at http:!!stagbeetle.animal.uiuc.edu!papers!
PNAS.html. F, forager.
*Gene lists estimated to contain 5% false positives by using the false-discovery
rate (FDR) step-up method (19).

†Focal bees were from six age!behavior groups: 0- to 1-h after eclosion (d1),
bees from the center of the colony (brood area) at 4, 8, 12, and 17 days of age
(d4, d8, d12, and d17), and 16- or 17-day-old foragers (d17F).

‡Focal bees were from two subspecies: A. m. ligustica and A. m. mellifera.
§Focal bees were cofostered in two host colonies.
¶All tests were contrasts (t tests) between treatment and vehicle control,
except cGMP vs. cAMP.

"One-tailed t test. Null hypothesis is that hive-restricted vs. F differences in gene
expression are not in the same direction as d8, d12, and d17 vs. F differences; only
genes significant in the latter contrast at P ! 0.001 were considered.
**A total of 17 genes were significant using two-tailed test with all genes.
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Atlantic are available, except a recent record
from the Irish margin by Peck et al. (23). The
authors recorded identical d18ON. pachyderma (s)
andG. bulloides values during the LGM that were
attributed to a continuous discharge of meltwater
from the British Ice Sheet and year round mixing
that homogenized the upper waters.

Several processes can create variability in the
d18O of foraminifera. Seasonal variability was
interpreted byGanssen andKroon (19) to explain
why G. bulloides d18O was more positive than
G. inflata d18O in the modern North Atlantic at
57°N, which was attributed to a later seasonal
period of G. bulloides production further south.
The uniform d18O of the foraminifera duringHEs
would require improbable ecological changes in
preferred depth-habitat zones or in seasonal
behavior if these values were not the result of
uniform upper–water-mass conditions. Upwell-
ing of 18O-depleted water produced by brine-
rejection at higher latitudes might affect the d18O
of deeper-dwelling foraminifera; however, it is
difficult to imagine it influencing d18O values in
all three taxa. Without a decrease in temperature
by ~2.5°C, it is impossible to lower the salinity
by 0.8 per mil (‰) (24) (and by extension to
lower d18O by 0.5‰) while remaining along the
same isopycnal surface, which by itself would
correspond to a 0.5‰ increase in the d18O of
calcite. Because these effects cancel each other
out, such a mechanism is inadequate to explain
the anomalously low d18O values in all three
planktonic foraminifera (Fig. 3B).

Intensified vertical mixing and deepening of
the mixed layer during HEs is the mechanism
remaining to explain the data. Atmospheric con-
ditions directly influence the mixed layer through
turbulence, and wind driven Langmuir circula-
tion could be the prime driver of the turbulence
(25, 26). As a result, the upper ocean often be-
comes well mixed to depths as great as 600 m
(27). Our d18O data from planktonic foramini-
fera that live at different depth ranges illustrate
the extent of this process, suggesting that during
the times of HEs the near-surface waters were
homogenized by stronger mixing.

During the last glacial cycle, large ice sheets
in the Northern Hemisphere and steeper merid-
ional temperature gradients in the atmosphere
must have reorganized atmospheric circulation.
As a result, winter sea-ice cover extended fur-
ther south, and glacial winds were stronger and
more zonal (28, 29). These winds would have
intensified the vertical mixing and turbulence in
the upper water masses. It is counterintuitive to
visualize such a mechanism during HEs when
the glacial North Atlantic was flooded with melt-
water resulting in stronger stratification. However,
our d18O data demonstrate that homogeniza-
tion of upper water masses did occur, suggesting
that this mechanism functioned at the core site.
Additional evidence of this mechanism comes
from the measurements of Ca+2 and Na+ ions
derived from sea salt and continental dust in the
Greenland ice core (30). Both Ca+2 and Na+ ions

in the ice core show rapid increases from their am-
bient concentration during stadials. Abrupt, many-
fold increases of these chemical species suggest
that storminess during the glacial period caused
stronger vertical mixing at the atmosphere/ocean
boundary at the subpolar and subtropical fronts.

The question of why weaker homogenization
of near-surface waters occurred during other D/O
cycles not associated with HEs could be raised,
because Greenland ice core data show similar
patterns of glaciochemical species. One possibil-
ity is that unfavorable composition or insufficient
volumes of meltwater were available to perturb
the near-surface waters during these D/O ice-
rafting cycles as the icebergs originated from
the smaller ice sheets. Hence, even though the
glacial climate was windier and stormier, the
near-surface waters continued to be stratified.

References and Notes
1. H. Heinrich, Quat. Res. 29, 143 (1988).
2. G. C. Bond et al., Nature 365, 143 (1993).
3. H. Rashid, R. Hesse, D. J. W. Piper, Paleoceanography

18, 1077 (2003).
4. R. B. Alley, D. R. MacAyeal, Paleoceanography 9, 503

(1994).
5. C. Huber et al., Earth Planet. Sci. Lett. 243, 504 (2006).
6. S. Manabe, R. J. Stouffer, Nature 378, 165 (1995).
7. D. Rind et al., J. Geophys. Res. 106, 27335 (2001).
8. J. Flückiger, R. Knutti, J. W. C. White, Paleoceanography

21, 1204 (2006).
9. E. A. Boyle, L. Keigwin, Earth Planet. Sci. Lett. 76, 135

(1985/86).
10. W. F. Ruddiman, Geol. Soc. Am. Bull. 88, 1813

(1977).
11. L. Keigwin, S. Lehman, Paleoceanography 9, 185 (1994).
12. M. Stuiver, P. J. Reimer, Radiocarbon 35, 215 (1993).
13. R. G. Fairbanks et al., Quat. Sci. Rev. 24, 1781 (2005).
14. H. Rashid, R. Hesse, D. J. W. Piper, Earth Planet. Sci. Lett.

208, 319 (2003).
15. H. Rashid, E. Grosjean, Paleoceanography 21, 1240

(2006).

16. J. J. Ottens, Oceanol. Acta 14, 123 (1991).
17. W. G. Deuser, J. Foraminifer. Res. 17, 14 (1987).
18. R. G. Fairbanks, P. H. Wiebe, A. W. Bé, Science 207, 61

(1980).
19. G. Ganssen, D. Kroon, J. Geol. Soc. 157, 693 (2000).
20. S. Mulitza, A. Dürkoop, W. Hale, G. Wefer, H. S. Niebler,

Geology 25, 335 (1997).
21. J. R. Luyten, A. J. Pedlosky, H. Stommel, J. Phys. Oceanogr.

13, 192 (1983).
22. L. Labeyrie et al., AGU Monogr. 112, 77 (1999).
23. V. Peck et al., Earth Planet. Sci. Lett. 243, 476 (2006).
24. G. L. Pickard, W. J. Emery, Descriptive Physical

Oceanography (Pergamon, Oxford, ed. 5, 1990).
25. S. K. Gulev, B. Barnier, H. Knochel, J.-M. Molines, M. Cottet,

J. Clim. 16, 3085 (2003).
26. K. Hanawa, T. Suga, in Ocean-Atmosphere Interactions,

Y. Toba, Ed. (Kluwer Academic, Tokyo, 2003), pp. 63–109.
27. M. K. Robinson et al., Atlas of the North Atllantic-Indian

Ocean Monthly Mean Temperatures and Mean Salinities
of the Surface Layer (U.S. Naval Oceanogr. Office
Reference Publication 18, Washington, DC, 1978).

28. M. Sarnthein, U. Pflaumann, M. Weinelt,
Paleoceanography 18, 771 (2003).

29. H. Gildor, E. Tzipperman, Philos. Trans. R. Soc. London
Ser. A 361, 1935 (2003).

30. P. A. Mayewski et al., Science 263, 1747 (1994).
31. We thank E. Goddard for helping to acquire part of the

isotope data and D. J. W. Piper and B. P. Flower for
discussions to improve an initial version of the manu-
script. H.R. thanks Fonds pour la Formation de
Chercheurs et l'Aide à la Recherche, Québec, for its
support through a postdoctoral fellowship. E.A.B. was
supported by grants from NSF and the Cambridge–
Massachusetts Institute of Technology.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1146138/DC1
SOM Text
Fig. S1
Table S1
References

6 June 2007; accepted 11 September 2007
Published online 20 September 2007;
10.1126/science.1146138
Include this information when citing this paper.

Wasp Gene Expression Supports an
Evolutionary Link Between Maternal
Behavior and Eusociality
Amy L. Toth,1* Kranthi Varala,2 Thomas C. Newman,1 Fernando E. Miguez,2
Stephen K. Hutchison,3 David A. Willoughby,3 Jan Fredrik Simons,3 Michael Egholm,3
James H. Hunt,4 Matthew E. Hudson,2 Gene E. Robinson1,5

The presence of workers that forgo reproduction and care for their siblings is a defining feature of
eusociality and a major challenge for evolutionary theory. It has been proposed that worker behavior
evolved from maternal care behavior. We explored this idea by studying gene expression in the
primitively eusocial wasp Polistes metricus. Because little genomic information existed for this species,
we used 454 sequencing to generate 391,157 brain complementary DNA reads, resulting in robust hits
to 3017 genes from the honey bee genome, from which we identified and assayed orthologs of 32
honey bee behaviorally related genes. Wasp brain gene expression in workers was more similar to
that in foundresses, which show maternal care, than to that in queens and gynes, which do not.
Insulin-related genes were among the differentially regulated genes, suggesting that the evolution of
eusociality involved major nutritional and reproductive pathways.

Amajor challenge in biology is to under-
stand the evolution of animal society in
molecular terms. Eusociality is the most

extreme form of cooperation, typified by indi-
viduals that care for siblings rather than repro-
duce themselves, i.e., “workers.” The evolution
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of eusociality has been ascribed to kin or colony-
level selection (1, 2), but these explanations do
not specify mechanistic routes.

It has long been suggested (3–5) that sibling
care by hymenopteran (ant, bee, wasp) workers
evolved from maternal care, which involves pro-
visioning brood by foraging for food and then
feeding them. According to this idea, two prin-
cipal behaviors exhibited by solitary Hymenop-
tera, reproduction (egg-laying) and maternal care
(brood provisioning), became uncoupled during
the early stages of social evolution (6), and these
behaviors eventually occurred in separate castes,
queens and workers, respectively (7). Linksvayer
and Wade (8) added a molecular dimension to
this idea by predicting that sibling care and
maternal care behaviors should be regulated by
similar patterns of gene expression.

We usedPolistes paperwasps to test Linksvayer
andWade’s idea.Polistes are primitively eusocial,
which means that although individuals special-
ize as either workers or reproductive individu-
als, these two castes are less distinct than in
advanced eusocial species. In Polistes, both
workers and reproductives display provision-
ing behavior, but at different points in the life
of a colony. Advanced eusocial insects, by con-
trast, have morphologically distinct queen and
worker castes, and in some species, such as the
honey bee, queens no longer exhibit any ma-
ternal care, which precludes comparing the
molecular basis of sibling and maternal care.
Primitively eusocial insects like Polistes afford
the opportunity to explore the molecular basis
of maternal and worker behavior within a sin-
gle species.

We measured brain gene expression in 87
individuals from four distinct behavioral groups
of females from naturally occurring colonies of
the temperate species Polistes metricus (Fig. 1A).
Foundresses are females that establish new col-
onies in the spring, often as solitary individuals.
Foundresses exhibit both reproductive (egg-
laying) and maternal (foraging and brood-
feeding) behavior. After rearing a first generation
of female brood that develop into workers,
successful foundresses become queens and cease
caring for brood. Workers take over provisioning
the brood—their siblings—by foraging for food
and then feeding them; workers show little, if
any, reproductive behavior. By contrast, queens
focus exclusively on reproductive behavior.
Gynes are reared late in the season; they engage
in no reproductive or maternal care behavior (9).
After successfully mating, gynes overwinter and

then become foundresses (10). We hypothesized
that brain gene expression patterns in P. metricus
workers and foundresses should be most similar
to each other from among these four groups, be-
cause they both show brood provisioning behav-
ior despite their different reproductive status.
Alternatively, if brain gene expression more
closely reflects reproductive behavior, expression
in foundresses and queens should bemost similar
to each other.

Social behavior is a complex and polygenic
trait, so an appropriate test of the idea that ma-
ternal and worker behavior share a common mo-

lecular basis requires analysis of multiple genes
in different pathways. ButPolisteswasps, though
venerable models for studies of social evolution
(11, 12), have until recently lacked genomic
sequence information (13). To provide a ready
source of test genes for quantitative reverse
transcription–polymerase chain reaction analysis,
we used 454 sequencing to obtain 45 megabases
(Mb) in 391,157 cDNA sequence fragments
from the P. metricus brain transcriptome (14).
We were interested to see whether this low-cost,
high-throughput sequencing method would be
successful for this purpose, despite short se-
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Fig. 1. P. metricus wasp
brain gene expression
analysis tests the predic-
tion that maternal and
worker (eusocial) behavior
share a common molecu-
lar basis. (A) Similarities
and differences in repro-
ductive and brood provi-
sioning status for the four
behavioral groups ana-
lyzed in this study: found-
resses (n = 22), gynes (n =
20), queens (n = 23), and
workers (n = 22). Each
individual wasp (total of
87) was assigned to a
behavioral group on the
basis of physiological
measurements (14). (B
to D) Results for 28 genes
selected for their known
involvement in worker
(honey bee) behavior. (B)
Heatmap of mean expres-
sion values by group and
a summary of analysis of
variance (ANOVA) results
for each gene. Genes were
clustered by K-means
clustering (37); those in
red showed significant
differences (ANOVA, P <
0.05; table S1) between
the behavioral groups.
P. metricus gene names
were assigned on the ba-
sis of orthology to honey
bee genes (reference in
parentheses); putative
functions were assigned
on the basis of similarity
to Drosophila melanogas-
ter genes. (C) Results of
linear discriminant anal-
ysis show that foundress
and worker brain profiles
are more similar to each
other than to the other
groups. (D) Results of hierarchical clustering show the same result (based on group mean expression
value for each gene). Four genes (PmVg, Pmg5sd, PmGlyP, and PmRfaBp) were excluded from these
analyses because they showed high levels of expression in tissue adjacent to the brain (fig. S2); results
for all three analyses were similar with and without these four genes (fig. S3).
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of eusociality has been ascribed to kin or colony-
level selection (1, 2), but these explanations do
not specify mechanistic routes.

It has long been suggested (3–5) that sibling
care by hymenopteran (ant, bee, wasp) workers
evolved from maternal care, which involves pro-
visioning brood by foraging for food and then
feeding them. According to this idea, two prin-
cipal behaviors exhibited by solitary Hymenop-
tera, reproduction (egg-laying) and maternal care
(brood provisioning), became uncoupled during
the early stages of social evolution (6), and these
behaviors eventually occurred in separate castes,
queens and workers, respectively (7). Linksvayer
and Wade (8) added a molecular dimension to
this idea by predicting that sibling care and
maternal care behaviors should be regulated by
similar patterns of gene expression.

We usedPolistes paperwasps to test Linksvayer
andWade’s idea.Polistes are primitively eusocial,
which means that although individuals special-
ize as either workers or reproductive individu-
als, these two castes are less distinct than in
advanced eusocial species. In Polistes, both
workers and reproductives display provision-
ing behavior, but at different points in the life
of a colony. Advanced eusocial insects, by con-
trast, have morphologically distinct queen and
worker castes, and in some species, such as the
honey bee, queens no longer exhibit any ma-
ternal care, which precludes comparing the
molecular basis of sibling and maternal care.
Primitively eusocial insects like Polistes afford
the opportunity to explore the molecular basis
of maternal and worker behavior within a sin-
gle species.

We measured brain gene expression in 87
individuals from four distinct behavioral groups
of females from naturally occurring colonies of
the temperate species Polistes metricus (Fig. 1A).
Foundresses are females that establish new col-
onies in the spring, often as solitary individuals.
Foundresses exhibit both reproductive (egg-
laying) and maternal (foraging and brood-
feeding) behavior. After rearing a first generation
of female brood that develop into workers,
successful foundresses become queens and cease
caring for brood. Workers take over provisioning
the brood—their siblings—by foraging for food
and then feeding them; workers show little, if
any, reproductive behavior. By contrast, queens
focus exclusively on reproductive behavior.
Gynes are reared late in the season; they engage
in no reproductive or maternal care behavior (9).
After successfully mating, gynes overwinter and

then become foundresses (10). We hypothesized
that brain gene expression patterns in P. metricus
workers and foundresses should be most similar
to each other from among these four groups, be-
cause they both show brood provisioning behav-
ior despite their different reproductive status.
Alternatively, if brain gene expression more
closely reflects reproductive behavior, expression
in foundresses and queens should bemost similar
to each other.

Social behavior is a complex and polygenic
trait, so an appropriate test of the idea that ma-
ternal and worker behavior share a common mo-

lecular basis requires analysis of multiple genes
in different pathways. ButPolisteswasps, though
venerable models for studies of social evolution
(11, 12), have until recently lacked genomic
sequence information (13). To provide a ready
source of test genes for quantitative reverse
transcription–polymerase chain reaction analysis,
we used 454 sequencing to obtain 45 megabases
(Mb) in 391,157 cDNA sequence fragments
from the P. metricus brain transcriptome (14).
We were interested to see whether this low-cost,
high-throughput sequencing method would be
successful for this purpose, despite short se-
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of eusociality has been ascribed to kin or colony-
level selection (1, 2), but these explanations do
not specify mechanistic routes.

It has long been suggested (3–5) that sibling
care by hymenopteran (ant, bee, wasp) workers
evolved from maternal care, which involves pro-
visioning brood by foraging for food and then
feeding them. According to this idea, two prin-
cipal behaviors exhibited by solitary Hymenop-
tera, reproduction (egg-laying) and maternal care
(brood provisioning), became uncoupled during
the early stages of social evolution (6), and these
behaviors eventually occurred in separate castes,
queens and workers, respectively (7). Linksvayer
and Wade (8) added a molecular dimension to
this idea by predicting that sibling care and
maternal care behaviors should be regulated by
similar patterns of gene expression.

We usedPolistes paperwasps to test Linksvayer
andWade’s idea.Polistes are primitively eusocial,
which means that although individuals special-
ize as either workers or reproductive individu-
als, these two castes are less distinct than in
advanced eusocial species. In Polistes, both
workers and reproductives display provision-
ing behavior, but at different points in the life
of a colony. Advanced eusocial insects, by con-
trast, have morphologically distinct queen and
worker castes, and in some species, such as the
honey bee, queens no longer exhibit any ma-
ternal care, which precludes comparing the
molecular basis of sibling and maternal care.
Primitively eusocial insects like Polistes afford
the opportunity to explore the molecular basis
of maternal and worker behavior within a sin-
gle species.

We measured brain gene expression in 87
individuals from four distinct behavioral groups
of females from naturally occurring colonies of
the temperate species Polistes metricus (Fig. 1A).
Foundresses are females that establish new col-
onies in the spring, often as solitary individuals.
Foundresses exhibit both reproductive (egg-
laying) and maternal (foraging and brood-
feeding) behavior. After rearing a first generation
of female brood that develop into workers,
successful foundresses become queens and cease
caring for brood. Workers take over provisioning
the brood—their siblings—by foraging for food
and then feeding them; workers show little, if
any, reproductive behavior. By contrast, queens
focus exclusively on reproductive behavior.
Gynes are reared late in the season; they engage
in no reproductive or maternal care behavior (9).
After successfully mating, gynes overwinter and

then become foundresses (10). We hypothesized
that brain gene expression patterns in P. metricus
workers and foundresses should be most similar
to each other from among these four groups, be-
cause they both show brood provisioning behav-
ior despite their different reproductive status.
Alternatively, if brain gene expression more
closely reflects reproductive behavior, expression
in foundresses and queens should bemost similar
to each other.

Social behavior is a complex and polygenic
trait, so an appropriate test of the idea that ma-
ternal and worker behavior share a common mo-

lecular basis requires analysis of multiple genes
in different pathways. ButPolisteswasps, though
venerable models for studies of social evolution
(11, 12), have until recently lacked genomic
sequence information (13). To provide a ready
source of test genes for quantitative reverse
transcription–polymerase chain reaction analysis,
we used 454 sequencing to obtain 45 megabases
(Mb) in 391,157 cDNA sequence fragments
from the P. metricus brain transcriptome (14).
We were interested to see whether this low-cost,
high-throughput sequencing method would be
successful for this purpose, despite short se-
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Fig. 1. P. metricus wasp
brain gene expression
analysis tests the predic-
tion that maternal and
worker (eusocial) behavior
share a common molecu-
lar basis. (A) Similarities
and differences in repro-
ductive and brood provi-
sioning status for the four
behavioral groups ana-
lyzed in this study: found-
resses (n = 22), gynes (n =
20), queens (n = 23), and
workers (n = 22). Each
individual wasp (total of
87) was assigned to a
behavioral group on the
basis of physiological
measurements (14). (B
to D) Results for 28 genes
selected for their known
involvement in worker
(honey bee) behavior. (B)
Heatmap of mean expres-
sion values by group and
a summary of analysis of
variance (ANOVA) results
for each gene. Genes were
clustered by K-means
clustering (37); those in
red showed significant
differences (ANOVA, P <
0.05; table S1) between
the behavioral groups.
P. metricus gene names
were assigned on the ba-
sis of orthology to honey
bee genes (reference in
parentheses); putative
functions were assigned
on the basis of similarity
to Drosophila melanogas-
ter genes. (C) Results of
linear discriminant anal-
ysis show that foundress
and worker brain profiles
are more similar to each
other than to the other
groups. (D) Results of hierarchical clustering show the same result (based on group mean expression
value for each gene). Four genes (PmVg, Pmg5sd, PmGlyP, and PmRfaBp) were excluded from these
analyses because they showed high levels of expression in tissue adjacent to the brain (fig. S2); results
for all three analyses were similar with and without these four genes (fig. S3).
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