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1 Introduction

In statistics, we often want to describe how one variable (the response variable) depends on one or
more other variables (the predictor variables). Consider the following example. The weight of a
person will likely depend on a number of factors, such as the person’s height (taller people will weigh
more than shorter people, all else equal), the person’s sex (men tend to be heavier than women
at the same height), the person’s age (people tend to gain weight as they age), and the person’s
activity level (we expect people who are physically active to weigh less, on average). So in this
case, weight is the response variable, and height, sex, age, and activity level are predictor variables.
We would apply a statistical modeling approach to answer questions such as the following;:

1. Which of the predictor variables show a significant relationship with the response variable?
We could easily imagine a predictor variable that should not show a significant relationship,
such as the color of the person’s car in our weight example, and we would expect the statistical
approach to be able to differentiate between predictors that are significant and those that are
not.

2. How exactly does the response change with changing predictor variables? For example, for
every inch that a man is taller, how much more does he weigh?

3. How much variability in the response variable does each predictor variable explain? For
example, if we know a woman’s height, does that pretty much tell us her weight, or are
there so many other factors that influence weight, including ones that may be unknown, that
knowing a woman’s height does not tell us much about her weight, even though taller women
are heavier on average.

2 Defining a linear model

In the above example, we could write the relationship between predictor and response variables as
follows:

weight ~ height + sex + age + exercise (1)
(This is the way this relationship would be expressed in R). The tilde symbol (~) should be read
as “is modeled as”. So what this formula says is that weight is modeled as the sum of height, sex,
age, and exercise status. Of course we don’t mean to say that weight is exactly the sum of these
variables, that doesn’t make any sense. How would we even add height and sex? That’s why we
are using a tilde symbol and not an equals sign. What formula (1) is meant to say is that weight
increases or decreases in proportion to each of the predictors, and that all the predictors influence
weight independently of each other. (Independence is expressed by the fact that we are using the
plus sign to combine the predictors.) We can turn formula (1) into an exact equation by writing

weight = a + (b1 x height) + (by x sex) + (bg x age) + (by X exercise) + €. (2)



In this equation, the variables by, bo, b3, by are called regression coefficients. They describe how
the response variable changes with changing predictor variables. For example, we might find b; =
8lbs/in, which would mean that a person’s weight increases, on average, by 8lbs for every inch that
they are taller. Categorical variables, such as sex, can be encoded as zeros and ones (we could say
a zero stands for women and a one for men), in which case the value of by would tell us the number
of Ibs a men would be heavier than a women at the same height, and so on.

The variable a is called the intercept. It tells us the value of the response variable if all the
predictor variables are zero. In this particular example, the weight of a person who is zero inches
tall and eats zero calories a day may seem like a weird concept. However, in general, we need an
intercept variable to construct a reasonable statistical model.

The variable € measures any unidentified variation in the data. This could be simply random
variation (some people may be heavier than others for no apparent reason) or systematic variation
due to unidentified causes. An example of the latter could be genetic background. The genetic
background of people most likely affects their weight, but our model does not explicitly account
for genetic background, so variation in genetic background gets absorbed in the error term.

The variables a, by, ba, b3, by, and € are obtained by fitting the model to the data. What this
means is that we find a set of values for a, by, by, b3, by such that the error (¢) is made as small
as possible. It is important to realize in this context that we need multiple observations (multiple
people for which we know their weight, their height, their sex, and so on) to be able to create a
meaningful fit. Hence, we don’t have just one equation of the form (2), we actually have multiple
such equations, one for each observational unit (person, in this case). A statistician would write
these equations as follows:

Yi = a+bix1; + bawo; 4+ b3wz; + baxa; + €. (3)

Compare this equation to (2). The y; has taken the place of weight, x;; has taken the place of
height, x2; the place of sex, and so on. Everything else has remained the same. What equation
(3) says is that the weight of person i (that is, y;) is given by the sum of the intercept (a) plus
the product of by and x; (that is, the height of the ith person times the weight increase per unit
height) plus the product of by and xg; (that is the sex of the ith person times the weight increase
for male sex) and so on, plus the error term for person i (given by ¢;). The quantity ¢; is also called
the residual. It measures the difference between the model prediction and the actual value of the
response variable for observation 1.

Notice how the response variable y;, the predictor variables x1;, x2;, 3, 24, and the residuals
¢; all depend on the person i. By contrast, the intercept a and the regression coefficients by, bo, b3,
b4 do not depend on the person 7. This is because predictor and response variables correspond to
individual observations, but intercept and regression coefficients capture the general relationship
between these variables, i.e., intercept and regression coefficients are assumed to be the same for
all observational units (people, in this case).

A statistical model that can be described by an equation such as (3) is called a linear model.
Linear models are extremely powerful, and are used throughout modern statistics. All the specific
statistical analyses discussed in this document (regression, analysis of variance, analysis of co-
variance) are special cases of linear models. If you know how to handle linear models, you can
analyze almost any data set that may come your way.

We mentioned earlier that fitting the model to the data means finding a set of values for a, by,
ba, b3, and by such that the error is made as small as possible. We can now make this statement
more precise. For each observational unit, the error (residual) is ¢;. We measure the overall error



in the model fit by summing the squares of the residuals:
n
SSresiduals = Z 512' (4)
i=1

Here, “SS” stands for “sum squares”, and n is the sample size (number of people in our data set).
Thus, fitting the model to the data means minimizing the sum squares of the residuals SS;egiduals-

In practice, calculating the exact values of the regression coefficients that minimize the sum
squares of the residuals can be rather complicated. Fortunately, we don’t have to worry about
how exactly this calculation is carried out. R will do it for us. What we need to understand and
remember is that the regression coefficients apply to all observations equally, and that they are
chosen such that the residuals become as small as possible.

3 Hypothesis testing

We mentioned in the introduction that one of the questions we may ask in a statistical modeling
context is which predictors show a significant relationship with the response variable. How do we
know whether a predictor shows a significant relationship? Consider the example from the previous
section. If height had no influence on weight, then we would expect the regression coefficient that
converts height into weight (b1) to be zero. If by = 0, then no matter how tall people are, we would
always expect them to have the same weight.

More formally, if we want to test the hypothesis that height is a significant predictor of weight,
we would consider the following hypotheses:

Hy: weight is independent of height, b, = 0.
Ha: weight depends on height, b; # 0.

If we reject Hp, then height is a significant predictor of weight, and it needs to be included in our
model. By contrast, if we fail to reject Hp, then height makes no difference to our model and we
might just as well have left it out of the model.

Let’s now consider the hypothesis that a person’s sex makes a difference for that person’s weight.
In this case, the hypotheses would be:

Hp: weight is independent of sex, by = 0.
Ha: weight depends on sex, by # 0.

As you can see, now we’re simply asking whether a different regression coefficient is significantly
different from zero. In general, hypothesis testing in a modeling framework boils down to testing
whether specific regression coefficients are significantly different from zero or not.

4 One-factor analysis of variance (ANOVA)

It is a common occurrence that we want to determine the influence of a categorical predictor
variable on a quantitative response. For example, if we are only interested in the weight differences
as explained by sex, then we have one categorical predictor (sex) and one quantitative response
(weight). Earlier in the course, we would have used a t-test to analyze this scenario, but now we
want to consider it in the context of a linear model.

Statisticians refer to categorical variables also as “factors”. A linear model with one categorical
predictor is called one-factor analysis of variance or just analysis of variance (in short, ANOVA).



Let’s consider a concrete example. The data file “weights.csv” contains a fictitious data set
containing weight (in kg), height (in cm), age (in years), sex (male or female), exercise status
(light, moderate, or heavy), and hair color (blonde, brown, black, or red) of 300 people:

> weights<-read.csv("weights.csv")
> head(weights)
weight height sex age exercise hair.color

1 81.63 176.9 male 37 moderate brown
2 78.98 172.4 male 38 light brown
3 78.14 176.2 male 31 moderate blonde
4 84.66 179.8 male 39 light brown
5 81.42 181.6 male 32 heavy brown
6 76.86 170.8 male 36 light brown

Women seem, on average, to be lighter than men in this data set (Figure 1). A t test confirms this
hypothesis:

> t.test(weights$weight [weights$sex=="female’] ,weights$weight [weights$sex=="male’])
Welch Two Sample t-test
data: weights$weight[weights$sex == "female"] and weights$weight [weights$sex == "male"]

t = -14.7452, df = 286.86, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to O
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Figure 1: Boxplots of weight for female and male subjects in the example data set.



95 percent confidence interval:
-10.169326 -7.774141

sample estimates:

mean of x mean of y
70.79880 79.77053

We can test the same hypothesis with a linear model as follows:

> fit<-lm(weight~sex, data=weights)
> anova(fit)
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr (>F)
sex 1 6036.9 6036.9 217.42 < 2.2e-16 *xx*
Residuals 298 8274.2 27.8

Signif. codes: O **xx 0.001 **x 0.01 * 0.05 . 0.1 1

The 1m() function fits the model to the data; in this case, the model simply tries to explain weight
on the basis of sex, weight~sex. The data=weights argument to 1m() tells the fitting function
which data set to use. The 1m() function produces a fitted model, which we store in the variable
fit. To analyze the model, we use the function anova(), which displays the results in an ANOVA
table.

The ANOVA table contains one row for each predictor variable (here, only sex) plus a row
for the residuals. Each row lists the number of degrees of freedom for that variable (Df), the sum
squares (Sum Sq), the mean squares (Mean Sq, the sum squares divided by the number of degrees of
freedom), the F value (mean squares for the variable divided by the mean squares of the residuals),
and the associated P value (Pr(>F)). In the case of sex, the number of degrees of freedom is 1
(number of groups — 1), the sum squares are 6036.9, the mean squares are 6036.9/1 = 6036.9, and
F = 6036.9/27.8 = 217.42. The associated P value is extremely small (< 2.2 x 10716), so we can
reject the null hypothesis and we conclude that weight differs significantly for men and women in
this data set. Thus, our modeling approach gave us the same result as the t test shown previously.

However, the modeling approach gives us more than the t test, because it also tells us how
much of the variation in weight is explained by sex. The amount of variation explained is the sum
squared associated with a variable divided by the sum square total. Here, we find:

R? = 6036.9/(6036.9 + 8274.2) = 42%. (5)

Thus, 42% of the variation in weight is explained by sex, and 58% of the variation in weight is
residual (explained by factors other than weight or not explained at all).

While the t test can only compare a response variable among two groups, ANOVA can handle a
larger number of groups. For example, in the same data set, the exercise status groups people into
three groups, people that engage only in light exercise, people that engage in moderate exercise, and
people that engage in heavy exercise. The ANOVA null hypothesis is that weight is independent
of exercise status, i.e., all three groups have the same weight on average.

Let’s test this hypothesis on our example data set:

> fit<-lm(weight~exercise, data=weights)
> anova(fit)



Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
exercise 2 180.4 90.221 1.8963 0.1519
Residuals 297 14130.7 47.578

According to this test, exercise status does not have a significant effect on weight (P = 0.1519) and
explains very little variation in the data (R? = 180.4/14130.7 = 1.3%).

Note that the ANOVA looks at all groups at the same time. So if reject the null hypothesis,
we only know that some of the groups are different than others. If we want to know which group
specifically is different from which other group, we have to look at pairs of groups one by one. One
option is to do pairwise t tests with correction for multiple testing.

5 Multi-factor ANOVA

In the preceding section, we found that weight differed significantly by sex but not by exercise
status. Since sex explained over 40% of the variation in weight, it is possible that this variation
drowned out the small difference in weight caused by exercise status. If we analyzed the data
separately by sex (i.e., do one analysis only for men and one only for women), we might find that
exercise status does have a significant effect in these subgroups.

In statistical modeling, we handle those kinds of situations by incorporating multiple predictors
into the model. For example, we can carry out an ANOVA that considers both sex and exercise
status as predictor variables:

> fit<-lm(weight~sex+exercise, data=weights)
> anova(fit)
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
sex 1 6036.9 6036.9 222.4104 < 2e-16 ***
exercise 2 239.9 119.9  4.4187 0.01285 *
Residuals 296 8034.3 27.1

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

As we can see, now the ANOVA table has one row for sex and one row for exercise, each with
its associated P value. And we also see that now exercise makes a significant contribution to the
model. We say that exercise is significant when controlling for sex.

The model with sex and exercise assumes that those two factors are independent, i.e., that
whatever weight reduction exercise causes is the same in men and women. This need not be the
case, however. We could imagine that exercise might have a bigger effect in women than in men,
for example because men who exercise a lot build more muscle and hence weigh more, relatively
speaking, than men who don’t exercise that much.

If the effect of one factor in a model depends on another factor, we speak of an interaction.
The R function interaction.plot() allows us to visualize the data in a way that will highlight
possible interactions. Figure 2 shows the output of interaction.plot() on this data set. As we
can see, there is little difference in mean weight between people who exercise lightly or moderately,
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Figure 2: Interaction plot of weight explained by sex and exercise status. The y-axis shows mean
weight in subgroups of the data set. The six subgroups considered here are men and women with
either light, moderate, or heavy exercise status. Lines connect men and women with the same
exercise status. Non-parallel lines suggest that there is an interaction in the data set.

but there is a much bigger effect for heavy exercise. However, women seem to benefit much more
than men. The mean reduction in weight is approximately 3kg in women who exercise heavily
compared to women who exercise lightly or moderately, but in men the comparable reduction in
weight is less than 1kg.

The modeling framework allows us to test whether the interaction is significant or not. All we
have to do is replace sex+exercise by sex*exercise in the model formula. The * sign indicates
that sex and exercise could interact, whereas the + implies that interactions are not taken into
account.

This is the result we obtain from an ANOVA with interaction:

> fit<-lm(weight~sex*exercise, data=weights)
> anova(fit)
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
sex 1 6036.9 6036.9 224.5655 < 2e-16 ***
exercise 2 239.9 119.9 4.4615 0.01234 *
sex:exercise 2 130.9 65.4 2.4340 0.08945 .
Residuals 294 7903.5 26.9



Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Now the ANOVA table contains an additional row, labeled sex:exercise. This row represents the
possible interaction between sex and exercise. As we can see, the associated P value (P = 0.089)
is small but not < 0.05. We can conclude that while there seems to be a weak tendency for sex
and exercise to interact, this interaction is not statistically significant at the 5% level. If we used
a = 0.1, however, we could reject the null hypothesis of no interaction. In this case, we could
conclude that sex and exercise do interact significantly.

Important: If we find a significant interaction, we do not test for the significance of the
individual factors. In other words, whether exercise alone is significant or not does not matter if
the interaction between sex and exercise is significant. Interaction terms trump individual terms.

6 Simple linear regression

So far, the predictor variables we have considered were categorical. However, our data set also
has quantitative predictors: height and age. The statistical modeling approach can handle both
categorical and quantitative predictors. When we model a quantitative response in terms of one
(or more) quantitative predictors, we say that we are doing a linear regression analysis.

Let’s consider the simplest case, where weight is explained by height. This linear regression
model can be fit in R like so:

> fit<-lm(weight~height, data=weights)
> summary(fit)

Call:
Im(formula = weight ~ height, data = weights)

Residuals:
Min 1Q Median 3Q Max
-10.4147 -2.4183 0.1097 2.6083 14.2361

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -41.82779 4.06815 -10.28 <2e-16 **x
height 0.69097 0.02397 28.82 <2e-16 **x

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 3.561 on 298 degrees of freedom
Multiple R-squared: 0.736, Adjusted R-squared: 0.7351
F-statistic: 830.8 on 1 and 298 DF, p-value: < 2.2e-16

Note that the first line of R code again calls the 1m() function with the appropriate model, which
in this case is weight~height. However, in the second line we now use the summary () function
instead of the anova() function. The difference between the summary () function and the anova()
function is that they display different information about the fitted model. Both functions can be
used on all linear models, but the output of the anova() function is not as useful in the regression
context and the output of the summary () function is not as useful in the ANOVA context.



The anova() function shows us the sum squares, F' values, and P values of each factor. The
summary () function, on the other hand, shows us the individual regression coefficients with standard
error and associated P value.

Let’s go over the output of the summary () function in the above example. The most interesting
section is the section entitled Coefficients:. There are two rows, one for (Intercept) and one
for height. The (Intercept) row tells us about the intercept in the regression model. [We had
previously introduced the intercept as the variable a in Eq. (3) on page 2.] The height row tells
us about the regression coefficient for the predictor variable height.

Each row in Coefficients: section contains four numbers, titled Estimate (this is the coef-
ficient as estimated by the linear model), Std. Error (this is the standard error of the coefficient
estimate), t value (this is a ¢ value, as in the standard t test), and Pr(>|t|) (this is the P value,
testing the null hypothesis that the coefficient in question is equal to zero). Thus, in our example,
the intercept is —41.8 +4.1kg. In other words, the regression model estimates that a person of zero
height weighs —42kg. This statement is a meaningless extrapolation of the data set, but we note
that the intercept is highly significant and hence necessary to build a meaningful linear model.

The coefficient for height is more interesting. R states the estimate as 0.69 £ 0.024. What
this number means is that for every additional cm in height, people in the data set are on average
0.69kg heavier. The P value is extremely small, so this result is highly significant.

At the bottom of the output from the summary () function, we see that R prints two R? values,
an F-statistic, and another P value. The R? values tell us the overall amount of variation in the
data explained by the model, considering all the predictor variables that were used. The first of
the two, Multiple R-squared, corresponds to the R? we have discussed above, and is calculated
by dividing the sum of the sum squares of all predictor variable by the total sum squares of the
model. The second, Adjusted R-squared, is calculated using a slightly modified formula. It takes
into account that each predictor variable will capture some of the variance in the data by random
chance. A detailed discussion of the adjusted R? is beyond the scope of this document.

The F-statistic and P value at the bottom of the summary () output test the overall hypothesis
that the variance in the response variable explained by the model is not zero. This hypothesis test
is usually less interesting than the tests for individual non-zero regression coefficients.

7 Multiple linear regression

As in the case of ANOVA, we can build linear regression models with multiple predictor variables.
For example, we can regress weight against both height and age. We do this by simply adding age
to the regression formula:

> fit<-lm(weight~height+age, data=weights)
> summary(fit)

Call:
Im(formula = weight ~ height + age, data = weights)

Residuals:
Min 1Q Median 3Q Max
-8.0328 -1.4978 0.0168 1.7410 7.8350

Coefficients:
Estimate Std. Error t value Pr(>|t])



(Intercept) -90.00037 4.47016 -20.13 <2e-16 **x*
height 0.90896 0.02334 38.95 <2e-16 *x*x
age 0.25000 0.01679 14.89 <2e-16 **x*

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 2.699 on 297 degrees of freedom
Multiple R-squared: 0.8488, Adjusted R-squared: 0.8478
F-statistic: 833.7 on 2 and 297 DF, p-value: < 2.2e-16

Note that now we have a row corresponding to age in the Coefficients: section. That row tells
us about the increase in weight with increasing age. Also note that the estimates for the intercept
and the coefficient for height have changed. The overall R? is now 85%, and it was only 74% in the
previous model. Thus, the new model captures more variation in the data, and hence the regression
coefficients should be considered to be more accurate. Hence, from this analysis we can conclude
that weight increases, on average, by 0.91kg for every cm in height and by 0.25kg for every year in
age.

8 Analysis of co-variance (ANCOVA)

So far, we have discussed ANOVA, where we have a quantitative response and categorical predictors,
and linear regression, where we have both a quantitative response and quantitative predictors. Often
times, however, we want to consider a categorical and a quantitative predictor at the same time.
Such an analysis is called analysis of covariance (ANCOVA).

For example, when we first looked at the weight data set, we found that weight differed by sex,
and men were on average almost 10kg heavier than women (Figure 1). However, men in this data
set are also taller than women (not shown). Therefore, we have to ask whether the increase in
weight for men is caused by their increase in height, or whether men are heavier than women even
when controlling for height. In other words, we want to know whether a woman and a man of equal
height are expected to have comparable weight.

We perform an ANCOVA by simply adding both the quantitative and the categorical predictor
into the regression model, like so:

> fit<-lm(weight~height+sex, data=weights)
> summary(fit)

Call:
Im(formula = weight ~ height + sex, data = weights)

Residuals:
Min 1Q Median 3Q Max
-10.4057 -2.4104 0.0954 2.5924 14.2285

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -41.39275 5.97427 -6.929 2.64e-11 **x*
height 0.68822 0.03660 18.801 < 2e-16 *x*
sexmale 0.06251 0.62781 0.100 0.921
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Signif. codes: O *** 0.001 *x 0.01 *x 0.05 . 0.1 1

Residual standard error: 3.566 on 297 degrees of freedom
Multiple R-squared: 0.736, Adjusted R-squared: 0.7342
F-statistic: 414 on 2 and 297 DF, p-value: < 2.2e-16

The additional coefficients row, labeled sexmale, tells us how much heavier men than women are
at equal height. As we can see, this is a rather small number (0.06kg), and it is not significant.
Thus, this model would suggest to us that men and women of equal height have equal weight.
However, what this analysis ignores is that age is also a significant predictor. In this data set, men
are taller but women are older (not shown). Therefore, if we control only for height, we find that
men and women have comparable weight, but these men and women are not of comparable age
If we want to compare men and women of comparable height and age, we have to include both
predictor variables in our model:

> fit<-lm(weight~height+age+sex, data=weights)
> summary(fit)

Call:
Im(formula = weight ~ height + age + sex, data = weights)

Residuals:
Min 1Q Median 3Q Max
-4.1960 0.0562 0.2956 0.9679 1.1910

Coefficients:
Estimate Std. Error t value Pr(>lt])

(Intercept) -68.58942 2.52842 -27.13 <2e-16 *xx*
height 0.69186 0.01488 46.49 <2e-16 *x*x
age 0.48569 0.01254 38.74 <2e-16 *x*x
sexmale 9.60279 0.35469 27.07 <2e-16 **x*

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 1.45 on 296 degrees of freedom
Multiple R-squared: 0.9565, Adjusted R-squared: 0.9561
F-statistic: 2170 on 3 and 296 DF, p-value: < 2.2e-16

We see that now men are again almost 10kg heavier than women, if we compare men and women
of similar height and age. Also, the overall R? is now 97%. Thus, this model fits much better than
any model we previously considered.

9 Linear models with multiple categorical and quantiative predic-
tors

As we have seen in the previous sections, linear models can handle both categorical and quantitative
predictors, in arbitrary combinations. In general, one would want to add all predictor variables that
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could possibly explain some variability in the response, and then use the linear model framework
to test which predictors are significant and which are not.

In our weight example, the data set contains information about height, age, sex, exercise status,
and hair color. We fit a model considering all these predictors with the following R command:

> fit<-lm(weight~height+age+sex+exercise+hair.color, data=weights)
Let us first run the anova() function on this fitted model:

> anova(fit)
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

height 1 10533.2 10533.2 15543.8322 <2e-16 **x*
age 1 1614.3 1614.3 2382.2269 <2e-16 **x*
sex 1 1541.2 1541.2 2274.4087 <2e-16 **x*
exercise 2 424.5 212.2 313.2039 <2e-16 ***
hair.color 3 0.7 0.2 0.3497 0.7894
Residuals 291 197.2 0.7

Signif. codes: O **xx 0.001 *x 0.01 *x 0.05 . 0.1 1

We see that height, age, sex, and exercise status all have a significant relationship with weight,
whereas hair color does not.
To see the individual regression coefficients, we have to use the summary () function:

> summary(fit)

Call:
Im(formula = weight ~ height + age + sex + exercise + hair.color,
data = weights)

Residuals:
Min 1Q Median 3Q Max
-1.7610 -0.4481 0.2958 0.4159 1.7701

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -72.933913 1.450465 -50.283 <2e-16 **%*
height 0.701833 0.008493 82.636 <2e-16 ***
age 0.492389 0.007210 68.295 <2e-16 **%*
sexmale 9.661172 0.203926 47.376 <2e-16 ***
exerciselight 2.935997 0.123909 23.695 <2e-16 **x*
exercisemoderate 2.905738 0.139709 20.798 <2e-16 **x*
hair.colorblonde 0.024580 0.135769 0.181 0.856
hair.colorbrown 0.039352 0.123463 0.319 0.750
hair.colorred -0.160334 0.209804 -0.764 0.445

Signif. codes: O **x 0.001 *x 0.01 *x 0.05 . 0.1 1
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Residual standard error: 0.8232 on 291 degrees of freedom
Multiple R-squared: 0.9862, Adjusted R-squared: 0.9858
F-statistic: 2603 on 8 and 291 DF, p-value: < 2.2e-16

We can summarize the results from this regression model as follows: on average, weight increases
by 0.7kg for every cm of height and by 0.5kg for every year of age. Men are on average 9.7kg heavier
than women, if all else is equal. (All else means all predictor variables considered, i.e., height, age,
exercise status, and hair color.) Light and moderate exercise both yield approximately 2.9kg in
extra weight, on average, compared to heavy exercise. None of the hair colors make any difference.
Overall, the model explains nearly all (99%) of the variation in the data.

10 Assumptions of linear models

All linear models make the following assumptions:
e Residuals are normally distributed.
e The variance in the data is similar across all predictor values.

e Predictors are independent of each other (unless we explicitly model interactions, as discussed
in Section 5).

e For quantitative predictors, the response depends linearly on the predictors.

All these assumptions should be checked when building a linear model. Let’s do this check for
a simple ANCOVA model, where we model weight as a function of age and sex.
To test whether residuals are normally distributed, we do a g-q plot of the residuals:

> fit<-lm(weight~age+sex,data=weights)
> qgnorm(fit$residuals)

The resulting graph is shown in Figure 3, left. The points mostly fall onto a straight line, and
hence the assumption of normally distributed residuals is satisfied in this case.
To test whether variance is uniform, we can plot the residuals against the fitted values:

> plot(fit$fitted.values,fit$residuals)

The resulting graph is shown in Figure 3, right. We see a uniform band of points, spread around
zero. This outcome indicates that the variance is uniform. Non-uniform variance would display as
a systematic trend in the data, for example a fanning out such that residuals tend to be small for
small fitted values and large for large fitted values.

Both non-normality and non-uniformity of residuals can often be ameliorated by transforming
the predictor and/or the response variables. Transformations in regression models work just as
they do for other statistical tests; for example, we can take the logarithm of a predictor or response
variable and see if the transformed data set agrees better with the modeling assumptions.

To assess whether predictors are independent of each other and whether the response variable
depends linearly on quantiative predictors, we plot the response against various predictors and look
at the data. For example, we can plot weight against age separately for men and women:
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Figure 3: Diagnostic plots of a fitted model. Left: g-q plot of residuals. Right: residuals plotted
against fitted values.

> men<-weights[weights$sex=="male’,]

> women<-weights[weights$sex=="female’,]

> plot(men$age,men$weight, x1lim=c(20,69), ylim=c(55,95), xlab=’age [years]’,
ylab="weight [kgl’, pch=19)

> points(women$age,women$weight)

The resulting plot is shown in Figure 4. We see that weight changes linearly with age, for both men
and women. Hence, the assumption of linearity is satisfied. Furthermore, the relationship between
weight and age seems similar for men and women (the slopes are comparable), but the weights for
men are simply shifted relative to the weights for women (at the same age, men are, on average,
about 18kg heavier). Therefore, the assumption of independence is satisfied as well. If age and sex
were not independent, then we might see a different slope for men and women.

If the assumptions of linearity or independence are not satisfied, then one can develop more
sophisticated models that allow for these issues. However, such models are beyond the scope of
this document.
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Figure 4: Weight plotted as a function of height for men (filled symbols) and women (open symbols).
Weight varies linearly with age for both groups. Moreover, age and sex seem to be independent
predictors, because male weight is shifted relative to female weight but shows a comparable linear

relationship with comparable slope.
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