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Abstract

Errors in multiple sequence alignments (MSAs) can reduce accuracy in positive-selection inference. Therefore, it has been
suggested to filter MSAs before conducting further analyses. One widely used filter, Guidance, allows users to remove
MSA positions aligned with low confidence. However, Guidance’s utility in positive-selection inference has been disputed
in the literature. We have conducted an extensive simulation-based study to characterize fully how Guidance impacts
positive-selection inference, specifically for protein-coding sequences of realistic divergence levels. We also investigated
whether novel scoring algorithms, which phylogenetically corrected confidence scores, and a new gap-penalization score-
normalization scheme improved Guidance’s performance. We found that no filter, including original Guidance, consis-
tently benefitted positive-selection inferences. Moreover, all improvements detected were exceedingly minimal, and in
certain circumstances, Guidance-based filters worsened inferences.
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Multiple sequence alignment (MSA) construction represents
the most fundamental step in nearly all molecular evolution
analyses. Recently, several studies have shown that poor MSA
quality can hinder accuracy in positive-selection inference
(Schneider et al. 2009; Fletcher and Yang 2010; Markova-
Raina and Petrov 2011). In response, some have advocated
that users filter MSAs by removing putatively poorly aligned
regions (Jordan and Goldman 2012; Privman et al. 2012), with
the goal of reducing noise and maximizing signal.

One widely used filter, known as Guidance (Penn et al.
2010), derives a confidence score for each MSA position by
sampling guide tree variants during progressive alignment
construction. Users can then mask positions that score
below a set threshold, thus removing potentially misleading
signal. Unfortunately, studies investigating Guidance’s utility
in positive-selection inference have produced conflicting find-
ings. Although one study (Privman et al. 2012) found that
Guidance dramatically improved accuracy, a separate study
(Jordan and Goldman 2012) found that Guidance affected
positive-selection inference only modestly. Both studies found
that filtering was primarily beneficial for highly diverged se-
quences although it is unlikely that these high divergence
levels were representative of sequences used in typical posi-
tive-selection inference studies. Overall, Privman et al. (2012)
strongly advocated Guidance’s use, whereas Jordan and
Goldman (2012) emphasized relying primarily on robust
MSA construction methods.

To reconcile these distinct recommendations, we have
conducted an extensive simulation-based study to elucidate
how the Guidance filter affects positive-selection inference,
particularly for sequences of realistic divergence levels. We
additionally examined the potential benefits to modifying
the Guidance scoring scheme in several ways. First, we

assessed whether two novel algorithms that corrected
Guidance scores for the sequences’ phylogenetic relationships
could improve upon the original Guidance algorithm. The
first phylogenetically corrected method incorporated
a weight, calculated by BranchManager (Stone and Sidow
2007), for each MSA sequence, and the second method
incorporated patristic distances (the sum of branch lengths
between two taxa), calculated through the Python library
DendroPy (Sukumaran and Holder 2010). We refer to these
methods, respectively, as BMweights and PDweights. We
additionally tested a new gap-penalization score-normaliza-
tion scheme, which scaled a given residue’s score according
to the number of gaps in its column, thus capturing the
inherent unreliability of residues in gappy regions. We refer
to filters using the gap-penalization scheme as GuidanceP,
BMweightsP, and PDweightsP. To assess the performance
of these novel algorithms, we reimplemented the
Guidance software (available at https://github.com/
sjspielman/alignment_filtering, last accessed June 11, 2014).

We simulated protein-coding sequences using Indelible
(Fletcher and Yang 2009) according to two selective profiles:
H1N1 influenza hemagluttinin (HA), which featured a mean
dN=dS ¼ 0:37, and HIV-1 envelope protein subunit GP41,
which featured a mean dN=dS ¼ 0:89. We used these selec-
tive profiles because, although both genes contain positively
selected regions (Bush et al. 1999; Frost et al. 2001; Bandawe
et al. 2008; Meyer and Wilke 2012), most sites in HA are either
under strong purifying or positive selection, whereas relatively
more sites in GP41 have dN/dS values near 1, making positive-
selection inference more challenging. For each selective
profile, we simulated 100 MSA replicates along each of four
different gene trees consisting of 11, 26, 60, and 158 taxa,
yielding 800 simulated MSAs in total. The first two trees
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were obtained from Spielman and Wilke (2013), and the
second two trees were obtained from Yang et al. (2011)
and Betancur-R et al. (2013), as deposited in TreeBASE
(http://treebase.org, last accessed June 11, 2014). All se-
quences were simulated with a 5% indel rate, as is typical of
mammalian genomes (Cooper et al. 2004), and an average
length of 400 codons.

We processed unaligned amino acid sequences with our
Guidance reimplementation using the aligner MAFFT L-INS-I
(linsi) (Katoh et al. 2002, 2005) and calculated confidence
scores for all inferred MSAs using each of the six scoring al-
gorithms. We masked positions with scores below 0.5, the
same threshold used by Jordan and Goldman (2012). A
more stringent threshold (e.g., 0.9 as used by Privman et al.
2012) worsened selection inference in certain cases (see sup-
plementary table S1, Supplementary Material online).

We inferred positive selection using two methods: FUBAR
(Murrell et al. 2013), implemented in HyPhy (Kosakovsky
Pond et al. 2005), and the standard PAML M8 model (Yang
et al. 2000; Yang 2007). Phylogenies used for positive-selection
inference were constructed in RAxMLv7.3.0 using the
“PROTGAMMAWAG” model (Stamatakis 2006). Although
we processed all MSAs with FUBAR, we did not process the
158-sequence MSAs with PAML due to prohibitive runtimes.
A detailed description of all methods, including the Guidance
software reimplementation, is available in supplementary ma-
terial, Supplementary Material online.

Guidance-Based Filters Have a Minimal
Effect on Positive-Selection Inference
We first compared the resulting false positive rates (FPRs) and
true positive rates (TPRs) of positive-selection inference be-
tween each filtered MSA and its corresponding unfiltered
MSA. For this analysis, we considered sites as positively se-
lected if the given inference method (i.e., FUBAR or PAML)
returned a posterior probability " 0:90. Performance mea-
sures TPR and FPR were calculated using the true dN/dS
values assigned during simulation.

For each simulation set, we fit two mixed-effects models
using the R package lme4 (Bates et al. 2012), with either TPR
or FPR as the response, filtering algorithm (including no fil-
tering) as a fixed effect, and simulation count as a random
effect. Table 1 summarizes results from these models for the
GP41 simulation sets. As we generally found that all filters
within a given normalization scheme performed similarly,
table 1 displays results for only Guidance and GuidanceP.
Supplementary table S2, Supplementary Material online, con-
tains linear model results for all filtering algorithms and for
both the HA and GP41 selective profiles.

As table 1 shows, unfiltered MSAs had exceedingly small
FPRs. Although MSA filtering, particularly the gap-penaliza-
tion algorithms, significantly decreased FPRs, the large per-
centage reductions recovered corresponded to very few false
positive sites. Indeed, for the GP41 158-sequence simulation
set, Guidance and GuidanceP removed, on average, only 0.61
and 1.14, respectively, false positive sites from unfiltered
MSAs. Thus, the actual number of false positives in our
MSAs was so low that the percentage changes shown in
table 1 do not accurately reflect the real-world impact
of Guidance-based MSA filtering on positive-selection
inference.

In general, Guidance-based filtering only marginally af-
fected TPR. Although filtering significantly increased TPR in
a few cases, it also significantly decreased TPR in other cases,
but all statistically significant effects were of extremely small
magnitudes. Moreover, GuidanceP provided both the largest
TPR increases and FPR decreases, whereas Guidance influ-
enced mean TPR more modestly. This result likely reflected
the fact that gap-penalization algorithms masked more sites
than did algorithms using the original normalization scheme
(supplementary table S3, Supplementary Material online).

Inference methods responded inconsistently to MSA fil-
tering. Figure 1 shows the TPR model results for the 26- and
60-sequence simulation sets for both the HA and the GP41
selective profiles. In FUBAR analyses, filters performed simi-
larly across simulation sets (Guidance mean TPR was

TABLE 1. Model Results for Effect of Filtering on GP41 Selective Profile Simulation Sets.

Measure N Method True Unfiltered Guidance GuidanceP

TPR 11 FUBAR 0.062 0.058 0.057 (#1.55) 0.057 (#1.21)
PAML 0.096 0.098 0.095 (#3.49)$$$ 0.095 (#3.80)$$$

26 FUBAR 0.216 0.196 0.20 (1.89)$$ 0.197 (0.36)
PAML 0.237 0.216 0.220 (1.54) 0.217 (0.24)

60 FUBAR 0.359 0.308 0.313 (1.77)$$ 0.304 (#1.16)
PAML 0.341 0.304 0.302 (#0.77) 0.296 (#2.71)$$$

158 FUBAR 0.348 0.320 0.325 (1.77)$$$ 0.326 (2.02)$$$

FPR 11 FUBAR 6:0% 10#4 1:2% 10#3 9:0% 10#4 ð#25:4Þ$$$ 9% 10#4 ð#25:4Þ$$$
PAML 1:8% 10#3 3:3% 10#3 2:6% 10#3 ð#22:3Þ$$$ 2:6% 10#3 ð#22:3Þ$$$

26 FUBAR 2:1% 10#3 4:5% 10#3 4:0% 10#3 ð#11:4Þ$ 3:5% 10#3 ð#22:5Þ$$$
PAML 1:6% 10#3 4:3% 10#3 4:0% 10#3 ð#6:60Þ 3:6% 10#3 ð#15:9Þ$$

60 FUBAR 2:5% 10#3 1:1% 10#2 9:7% 10#3 ð#11:1Þ$$$ 7:9% 10#3 ð#27:6Þ$$$
PAML 8:0% 10#4 9:3% 10#3 7:9% 10#3 ð#14:9Þ$$$ 6:4% 10#3 ð#31:0Þ$$$

158 FUBAR 3:1% 10#3 7:0% 10#3 5:1% 10#3 ð#27:5Þ$$$ 3:5% 10#3 ð#50:2Þ$$$

NOTE.—The column “Measure” refers to the performance measure reported, either mean TPR or mean FPR. The column “N” refers to the number of taxa in the given simulation
set. The column “Method” refers to the inference method used to detect positively selected sites. Values shown in parentheses refer to the average TPR or FPR percent change of
the respective unfiltered MSA, not the absolute increase or decrease. Mean TPR or FPR values shown in underline represent those which differ significantly from that of the
respective unfiltered MSA. Significance levels are $$$P < 0:001, $$P < 0:01, and $P < 0:05. All significance levels were corrected for multiple comparisons using the R multcomp
package (Hothorn et al. 2008). Note that the true MSAs were not included in the linear models but are shown here for comparative purposes.
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generally higher than were both unfiltered and GuidanceP
mean TPRs), but this trend was mostly statistically insignifi-
cant. In PAML analyses, however, filters did not behave con-
sistently across simulation conditions. For instance, the HA
26-sequence simulation set, when processed with GuidanceP
and PAML, exhibited the largest TPR improvement (4.04%) in
this study. However, for the GP41 60-sequence simulation set,
processing MSAs with GuidanceP and PAML significantly re-
duced mean TPR (#2.71%).

In sum, it was difficult to identify clear trends dictating
whether filtering increased or decreased TPR. However, we
emphasize that, for both the HA and GP41 simulation sets of
158 taxa, all filters significantly decreased FPR and increased
TPR, on average, although all effect magnitudes were minimal.
As we did not analyze these data sets with PAML, we caution
that this result may not extrapolate to inference methods
other than FUBAR. Additionally, all filters significantly re-
duced TPR for the GP41 11-sequence simulation set as ana-
lyzed with PAML. Thus, we did recover a slight trend
suggesting that MSA filtering should be reserved for larger
MSAs.

Guidance-Based Filters Improve Power under
Narrow Conditions
We additionally used receiver operating characteristic (ROC)
curves to assess whether MSA filtering influenced power in

positive-selection inference. Importantly, this analysis did not
restrict results to those obtained from a single posterior prob-
ability threshold for calling positive-selected sites. ROC curves
for the HA and GP41 60-sequence simulation sets are shown
in figure 2.

Several trends emerged from figure 2. First, power in pos-
itive-selection inference for HA simulation sets was universally
greater than for GP41 simulation sets. Given that the GP41
sequences featured a greater proportion of sites with dN/dS
near 1 that were more difficult to classify, this result was
unsurprising. Second, as algorithms within a given normaliza-
tion scheme (original vs. gap-penalization) had nearly identi-
cal curves, this analysis confirmed that introducing
phylogenetically weighted scores did not strongly affect
Guidance confidence scores. Finally, across the entire span
of the ROC curves (left-hand panels of fig. 2), the unfiltered
and filtered MSA curves were mostly indistinguishable al-
though MSAs filtered with gap-penalization algorithms did,
at certain FPR levels (roughly 0.1–0.3), perform worse than did
both unfiltered and Guidance-filtered MSAs.

However, filtering did somewhat increase power at very
low FPR rates, as seen in the right-hand panels of figure 1, in
particular when using PAML. These benefits, unfortunately,
only existed at FPR levels of roughly 1–4%, above which any
improvements quickly dissipated. Outside of this narrow FPR
region, filtered MSAs either performed the same as or worse
than unfiltered MSAs. Importantly, when we identified pos-
itively selected sites at a posterior probability" 0:9, nearly all
recovered FPRs were, on average, far less than 1% (table 1),
and therefore below the region where filtering increased
power. Our low recovered FPRs explained why we did not
detect substantial increases in TPR in our regression models
(fig. 1 and table 1 and supplementary table S1, Supplementary
Material online). Taken together, these results demonstrated
that Guidance-based filtering was not robust to varying FPR
levels. ROC curves for all other simulation sets yielded results
broadly consistent with those described here (supplementary
figs. S1 and S2, Supplementary Material online).

Discussion and Conclusions
The primary goal of MSA filtering is to remove excessive noise
while preserving informative data. We recovered few condi-
tions for which filtering consistently achieved this goal.
Although Guidance-based filtering was useful for FPR levels
ranging from around 1% to 4%, this range was extremely
narrow, and it is impossible to know whether any given real
data set will actually fall in this range. Moreover, that the more
statistically controlled phylogenetically corrected algorithms
did not improve upon the original Guidance algorithm indi-
cated the minimal benefits that Guidance-based filtering pro-
duced in the first place. The original Guidance did not prove
to be a robust method, and the phylogenetically corrected
scoring algorithms we implemented did not perform any
better.

Our study focused primarily on divergence levels represen-
tative of realistic protein-coding data typically used in posi-
tive-selection inference. Therefore, it is possible that Guidance
would have provided stronger benefits with highly diverged
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FIG. 1. Mean TPR for and 26- and 60-sequence simulation sets.
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to the unfiltered MSAs, are shown only for those changes which are
significant. Significance levels are the same as those given in table 1. (A)
Simulations with 26 sequences. (B) Simulations with 60 sequences.
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data (Jordan and Goldman 2012; Privman et al. 2012).
However, as shown in supplementary table S3,
Supplementary Material online, our MSAs contained gaps
in up to 60% of columns, meaning that constructing MSAs
on our data sets was not a trivial task, and portions which
were difficult to align certainly existed.

In sum, two distinct conclusions may be drawn from our
study. First, although Guidance did not universally benefit
positive-selection inference, it never entirely precluded the
detection of positively selected sites. Therefore, filtering
could be used as a conservative method in selection inference,
particularly if abundant false positives are expected. Second,
all benefits that filtering conferred were minimal, and filters
behaved inconsistently across simulation sets and between
the inference methods. Given these observations, there is no
guarantee that MSA filtering will help or harm any given
analysis. In fact, Guidance-based filters may inadvertently
result in a loss of power.

We conclude that, while potentially beneficial, Guidance-
based filtering is not a particularly reliable method for posi-
tive-selection inference, and therefore does not need to be a

necessary component of such studies. Furthermore, given
that only the 158-sequence simulation sets consistently fea-
tured both increased TPR and decreased FPR, we recommend
that filtering be reserved for relatively large ("150 taxa) data
sets. Moreover, we suggest that, when filtering, users employ a
lenient threshold (( 0:5) to preserve informative signal to
the extent possible. Above all, we advocate that users primar-
ily focus on employing high-quality MSA inference (e.g., linsi
[Katoh et al. 2005] or PRANK [Loytynoja and Goldman 2008])
and positive-selection inference methods.

Supplementary Material
Supplementary materials and methods, figures S1 and S2, and
tables S1–S3 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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