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Abstract

C57BL/6J (B6) and DBA/2J (D2) are two of the most commonly used inbred mouse strains in neuroscience research.
However, the only currently available mouse genome is based entirely on the B6 strain sequence. Subsequently,
oligonucleotide microarray probes are based solely on this B6 reference sequence, making their application for gene
expression profiling comparisons across mouse strains dubious due to their allelic sequence differences, including single
nucleotide polymorphisms (SNPs). The emergence of next-generation sequencing (NGS) and the RNA-Seq application
provides a clear alternative to oligonucleotide arrays for detecting differential gene expression without the problems
inherent to hybridization-based technologies. Using RNA-Seq, an average of 22 million short sequencing reads were
generated per sample for 21 samples (10 B6 and 11 D2), and these reads were aligned to the mouse reference genome,
allowing 16,183 Ensembl genes to be queried in striatum for both strains. To determine differential expression, ‘digital
mRNA counting’ is applied based on reads that map to exons. The current study compares RNA-Seq (Illumina GA IIx) with
two microarray platforms (Illumina MouseRef-8 v2.0 and Affymetrix MOE 430 2.0) to detect differential striatal gene
expression between the B6 and D2 inbred mouse strains. We show that by using stringent data processing requirements
differential expression as determined by RNA-Seq is concordant with both the Affymetrix and Illumina platforms in more
instances than it is concordant with only a single platform, and that instances of discordance with respect to direction of
fold change were rare. Finally, we show that additional information is gained from RNA-Seq compared to hybridization-
based techniques as RNA-Seq detects more genes than either microarray platform. The majority of genes differentially
expressed in RNA-Seq were only detected as present in RNA-Seq, which is important for studies with smaller effect sizes
where the sensitivity of hybridization-based techniques could bias interpretation.
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Introduction

Sandberg et al. [1] appear to have been the first to use

microarrays to examine differential brain gene expression between

two inbred mouse strains (C57BL/6 [B6] and 129SvEv). Using a

1.8 fold-change threshold, these authors found that ,1% of the

transcripts detected as present were differentially expressed.

Subsequent studies have examined differential brain gene

expression within large panels of inbred mouse or rat strains

[2,3,4,5] and in segregating rodent populations [6,7,8]. Recom-

binant inbred strains and F2 populations have been used to

generate expression QTL (eQTL) maps which in turn are often

integrated with behavioral quantitative trait loci (bQTL) maps

[4,5,9]. Improvements in both microarray technology and

analytical techniques made it possible to measure changes in

brain gene expression quite accurately; importantly the cumulative

data record has indicated that most differences in expression

between inbred strains or populations derived from inbred strains,

such as selectively bred lines [10], are actually quite small (15 to

30%). To some extent the small changes reflect the fact that the

hybridization isotherms for oligonucleotide arrays are frequently

not linear due to probe saturation [11]. This effect may well be

accentuated in brain because of the high degree of alternative

splicing [12]. A second problem with oligonucleotide arrays and

one that is specific to inbred strains or populations derived from

inbred strains is the effect of SNPs [8,13]. Rodent oligonucleotide

arrays are based upon the sequence of the B6 mouse or Brown-

Norway (BN) rat strains. Even inbred strains closely related to the
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B6 or BN may differ by several million SNPs [14], which in turn

can cause significant hybridization artifacts [13]. Masking for

SNPs can improve this situation but in some cases results in

deleting a probe (Illumina) or a probeset (Affymetrix) from the

analysis. A third problem with oligonucleotide arrays are the

annotation and summarization issues associated with predefined

reporters/probes. Finally, because microarrays primarily inter-

rogate the 39 untranslated region (39-UTR), they provide

relatively little information about alternative splicing. The

Affymetrix 1.0 Exon ST array collects data on alternative

splicing but when used to detect differential alternative splicing is

particularly sensitive to the ‘‘SNP effect’’ due to the smaller

number of probes per probeset.

The emergence of next-generation sequencing (NGS) and the

RNA-seq application provides a clear alternative to oligonucleotide

arrays for detecting differential gene expression and effectively deals

with the problems noted above. Mortazavi et al. [15] compared

mouse liver gene expression (B6 strain only) between data generated

by the short-read Illumina/Solexa 1G platform and data generated

from the Affymetrix 430 2.0 array. The short-read metric of

comparison was reads per kilobase of exon model per million

mapped reads (RPKM). At the gene level, the two platforms agreed

reasonably well. However, RNA-Seq also generated new data.

While 90% of the uniquely mapped reads fell within known exons,

the additional data suggested ‘‘new and revised gene models,

including changed or additional promoters, exons and 39-UTRs as

well as new candidate microRNA precursors.’’ Mortazavi et al. [15]

were also able to detect .100,000 splice sites and noted that ,3,500

genes expressed one or more alternate internal splices. Subsequent

studies in mouse and other species, e.g. yeast, have confirmed that

RNA-seq and microarrays yield similar data at the level of gene

expression [16,17,18]. There have been to our knowledge no studies

that have used RNA-seq to examine differential expression across

inbred strains. However, with a similar application in mind, Bullard

et al. [19] examined the various normalization paradigms that are

optimal to detect differential gene expression; they concluded that

upper quartile normalization introduces the least amount of bias.

The current study compares RNA-Seq with two microarray

platforms (Affymetrix MOE 430 2.0 and Illumina MouseRef-8 v2.0)

to detect differential striatal gene expression between the B6 and

DBA/2J (D2) inbred mouse strains. There are several reasons for

comparing the B6 and D2 strains. First, the B6 is the reference strain

for the mouse genome and the D2 strain is one of several strains that

are being completely sequenced as part of the Sanger Mouse

Genome project. Also there are extensive gene expression datasets

comparing the B6 and D2 strains and both recombinant inbreds

and F2 intercrosses derived from these strains; included in these

datasets are data from the striatum [8,20,21]. Finally, there is

extensive phenotypic data comparing the B6 and D2 strains [see 22]

including data for behavioral, anatomical and behavioral striatal-

related-phenotypes [2,23,24]. We show that by using stringent data

processing requirements differential expression as determined by

RNA-Seq is concordant with both the Affymetrix and Illumina

platforms in more instances than it is concordant with only one, and

that instances of conflicting directions of fold change are rare. The

large dynamic range of RNA-Seq detects thousands more genes

than seen on the microarrays. The additional information gained by

using this technology illustrates the value of RNA-Seq.

Methods

RNA preparation
Naı̈ve, adult, male B6 and D2 strain mice were used in the

RNA-Seq and Illumina microarray experiment while both genders

were utilized in the Affymetrix microarray experiment. This

animal study was reviewed and approved by the Portland

Veterans Affairs Medical Center Institutional Animal Care and

Use Committee under protocol ID VA1509. Animals were

sacrificed by cervical dislocation and the brains removed. The

striatum was dissected as follows. A 1.5-mm coronal slice of tissue

was removed for which the caudal boundary was the optic chiasm.

The slice was laid rostral surface down on an ice-cold Petri dish,

and the material surrounding the striatum was carefully removed.

From the caudal to rostral surface, the striatum decreases in size

and thus an angled cut was used to remove additional non-striatal

material. After dissection, the tissue was either flash frozen in

liquid nitrogen or stored in RNAlater (Qiagen, Valencia CA).

Total RNA was isolated using TRIzolH reagent (Invitrogen,

Carlsbad CA) using a one-step guanidine isothiocyanate proce-

dure. RNA samples were evaluated by ultraviolet spectroscopy for

purity and concentration (NanoDrop, Wilmington, DE) and were

assessed further for RNA integrity on the Agilent Bioanalyzer

(Santa Clara, CA). All samples had an RNA Integrity Number

(RIN) of 8 or better.

RNA-seq
Total RNA from 21 male mice (10 B6 and 11 D2) was provided

to the Oregon Health & Science University Massively Parallel

Sequencing Shared Resource facility [25] for transcriptome

sequencing (NCBI SRA accession number: SRA026846.1).

Libraries were prepared using the Illumina mRNA-Seq Sample

Preparation Kit (San Diego, CA). Briefly, poly(A)+ RNA was

recovered from 1 mg of total RNA using two rounds of isolation

with oligo-dT - coated Sera-Mag magnetic beads. The recovered

poly(A)+ RNA was then chemically fragmented. RNA fragments

were converted to cDNA using SuperScript II and random

primers. The second strand was synthesized using RNaseH and

DNA Pol I. The ends of the cDNA were repaired using T4 DNA

polymerase, T4 polynucleotide kinase, and Klenow DNA

polymerase. A single adenosine was added to the 39 end using

Klenow fragment (39 to 59 exo minus). Adaptors were attached to

the ends of the cDNA using T4 DNA ligase. 300 bp fragments

were extracted from a 2% low range ultra agarose sizing gel. The

300 bp fragment was then amplified by 15 cycles of polymerase

chain reaction using (PCR) Phusion DNA polymerase. Libraries

were validated with an Agilent Bioanalyzer (Santa Clara, CA).

Libraries were diluted to 10 pM and applied to an Illumina flow

cell using the Illumina Cluster Station. Sequencing was performed

on an Illumina GAIIx. Sequences were 76 cycle single read except

for the third flowcell, which was 70 cycles. The resulting data were

processed using the Illumina CASAVA package as described in

version 1.6 of the CASAVA user guide.

All reads were realigned to the NCBI m37 version of the mouse

genome assembly using the Bowtie [26] short read alignment

program considering the 22 chromosome assemblies. Each read

was trimmed to a length of 43 bases and a seeded alignment was

carried out using the first 32 bases allowing up to 2 mismatches.

Only uniquely mapping reads were used in this analysis. Exon

start and stop locations for NCBI m37 assembly were downloaded

from Ensembl [27], and for each gene, the union exons were

created as follows. For each Ensembl gene, annotated exons were

merged to create a set of non-redundant exons for a particular

gene. For example, if one annotated transcript had an exon that

overlapped exon boundaries in a second annotated transcript for a

given gene, the union exon boundaries would consist of the start

location of the first exon and the stop location of the second exon.

Because we did not perform strand specific RNA-Seq, if annotated

exons overlapped between genes, these intervals were removed

RNA-Seq and Array Profiling in the Mouse Striatum
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from the overall gene expression calculations similar to the union

intersection exons recently proposed [19]. A read was counted

using the Genominator [19] package from Bioconductor 2.6 if the

start position was located in one of our determined union exons. A

gene-level representation was then created by summing the counts

for each union exon attributed solely to a given gene. Genes with

read counts of zero in all 21 lanes were removed, as well as genes

that contained a zero read count in at least one B6 and one D2

sample. Total count normalization [19] and the fitting of the

Poisson model was performed in R [28], and upper quartile

normalization along with the negative binomial exact test was

performed using the edgeR Bioconductor package. The genes with

the log transformed average read count as determined by edgeR of

less than 220 were flagged as being low read count in Dataset
S1. The single nucleotide (SNP) correction of the NCBI m37

genome assembly was performed using a custom perl script using

SNPs obtained for the D2 strain from the Sanger Mouse Genomes

Project [14]. To create a synthetic D2 sequence, for each SNP the

D2 allele was inserted in the reference (B6) sequence at the

specified location. As the reference genome was repeat masked, if

an ‘N’ was present at the reference position, the D2 base was not

inserted but left as an ‘N’. All boxplots were generated using the

ggplot2 R package [29].

Microarray
High quality samples containing 2 mg of total RNA were sent to

the Oregon Health & Science University Gene Microarray Shared

Resource facility for labeling and hybridization on microarray

chips. The procedures used precisely followed Affymetrix’s or

Illumina’s specifications, respectively [30]. All microarray data are

MIAME compliant and the raw data has been deposited in GEO

with accession number GSE26024.

An independent group of 20 mouse samples (5 male D2, 5

female D2, 5 male B6, and 5 female B6 were assessed using the

Affymetrix MOE 430 2.0 array. These data were analyzed using

the Robust Multichip Average methodology [31] on perfect match

probes with the proposed background correction, quantile

normalization, and summarization procedures as in previous work

[13,32,33]. Differential expression was determined using the

limma Bioconductor [34] package by fitting a linear model also

incorporating gender status. Individual probes that spanned a SNP

between the B6 and D2 strains and probes with non-unique

alignments were masked [13]. For the purposes of comparing

across platforms, we used the Ensembl mappings of microarray

probesets [27]. If a probeset did not map within a unique exon of

an Ensembl build 59 gene, it was excluded from these analyses.

Any probeset that had fewer than four probes remaining (of the 11

in each probeset) after masking was excluded from our analyses.

To remove unreliable calls and set a threshold for the Affymetrix

probesets, we used default settings with the MAS5 method in the

affy package of Bioconductor. The MAS5 detection call flags the

probeset as ‘Present’ or detected (p,0.04), ‘Marginal’

(0.04,p,0.06) or ‘Absent’ or undetected (p.0.06). Probesets

with an ‘Absent’ call in at least one B6 and one D2 sample were

excluded. All differential expression p-values were false discovery

rate (FDR) adjusted using the q-value bioconductor package [35].

Fold change was computed using average anti-log RMA values for

each strain.

A total of 24 male mice (12 D2 and 12 B6) were assessed using

the Illumina MouseRef-8 v2.0 array. These include an indepen-

dent group of 5 D2 and 5 B6 mice, and a group of 7 B6 and 7 D2

samples that were also analyzed using RNA-seq. The Illumina

array data were analyzed with the lumi Bioconductor package

within R [36]. The data were transformed using the variance

stabilization transformation (VST) [37] and normalized using the

robust spline normalization (RSN) [36]. The threshold for a probe

to detect expression as ‘present’ was set at p,0.05 as determined

by lumi. Probes were excluded from our analyses if they did not

map perfectly to a single genomic location on the NCBI m37

assembly of the mouse genome. Similar to the methods for

Affymetrix, we used Ensembl mappings of Illumina probes for

comparisons across platforms, so probes were excluded if they did

not map to an Ensembl Gene ID (Build 59). If a probe spanned

one or more SNPs based upon Sanger Mouse Genomes

sequencing [14], it was removed. Differential expression p-values

were FDR adjusted using the q-value Bioconductor package [35].

Fold changes were computed using reversed VST transformations

averaged for each strain.

Results

RNA-Seq
We generated single end RNA-Seq reads from 10 B6 and 11 D2

mice (21 lanes on three Illumina GAIIx flowcells). A high level

summary of the reads for each sample is presented in Table S1,

including total reads and uniquely mapped reads. To facilitate

summarization of the RNA-Seq data relative to known gene

annotations, we began by assembling a gene-level representation

based upon Ensembl build 59 exon annotations as described in the

Methods. This yielded summarized read counts for 36,229 genes

annotated by Ensembl 59. 12,632 of these genes had no reads

across all lanes and were not considered further. Another 7,414

genes had no reads for at least one B6 and one D2 sample and

were considered to be unreliable. As can be seen in Fig S1, those

genes removed tended to have very low read counts compared to

the remaining genes. Our subsequent analyses focused on the

remaining 16,183 genes.

Although the distribution of read counts was variable between

lanes and flowcells, these differences could be normalized using an

upper quartile scaling procedure [19] (Fig. 1) without resorting to a

more extreme normalization procedure such as quantile normali-

zation [19,38]. Further, the upper quartile scaling (Fig. 1) resulted in

homogenous distributions compared to those based solely on scaling

by total read counts similar to the RPKM measure [15] (Fig S2).

In our hands, the single factor Poisson model coupled with a

likelihood ratio test proposed previously [19], produced results that

tended to be anti-conservative. The simplest explanation would be

that there was more variability across our biological replicates than

could be accounted for with a fixed dispersion Poisson model, the

possibility of which has been noted before [18,19]. Other

generalized linear models could be used to account for over

dispersion, such as one of a Poisson family fit with quasi-likelihood

[39] or one of the negative binomial family [40]. However,

because of the relative simplicity of our design, we decided to

utilize an exact test [41] for the negative binomial distribution as

implemented in the edgeR Bioconductor package [42].

After estimating the common dispersion parameter and

applying the exact test, a false discovery rate (FDR) controlling

[35] procedure was applied. We found 1,727 genes that were

differentially expressed (DE) (q-value,0.01) with 958 of these

being more highly expressed in B6 relative to D2 and 769 more

lowly expressed in B6 relative to D2 (log2 fold change B6/D2.0

or ,0, respectively). Presented in Dataset S1 (with an

accompanying description in Text S1) are the genes, their fold

change, a measure of average read count and a flag indicating

especially lowly expressed (low read count) genes. An examination

of the distribution of total union exon lengths classified by whether

or not the gene was determined to be differentially expressed

RNA-Seq and Array Profiling in the Mouse Striatum
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showed that there did not seem to be appreciable gene length bias

contrary to what had been seen previously [19,43]. Examination

of the counts of DE genes for each quartile of gene length also did

not show any gene length bias (Fig S3). In contrast, if we examine

the same plots generated for the single factor Poisson model

incorporating the upper quartile scaling procedure read count

adjustments in the offset, we see evidence that longer gene regions

tend to be biased toward differential expression (Fig S4) indicating

that choice of statistical model may be an important factor

regarding the influence of gene length on differential expression.

In addition to gene length, we assessed the potential impact of

genome structure on our results. As documented in Walter et al.

[13], microarray analyses can detect false negative or false positive

differential expression due to differences in hybridization efficien-

cies resulting from allelic sequence variation. A similar phenom-

enon could occur in RNA-Seq because of the heuristics applied to

speed up realignment algorithms. For instance a combination of

SNPs and base calling errors could cause a read to map

erroneously or not map at all potentially causing strain-specific

biases in differentially expressed genes. To address this concern we

computed the number of SNPs per kilobase of the union exons for

each of the 16,183 genes and assessed differential expression for

evidence of directional bias. As is shown in Fig S5 the distribution

of the D2.B6 differential expression calls is shifted downward

relative to the B6.D2 calls in terms of the density of known SNPs

present, although the distributions largely overlap. To further

address this issue we synthesized a D2 reference sequence to which

we realigned the D2 reads. We found that there was a small

increase in the number of uniquely mapping reads (less than 0.2%

increase in reads for each D2 sample) and minimal increase in

multi-mapping reads (less than 0.1% for each D2 sample). Further,

after summarization, normalization, and application of the edgeR

procedure, we found that 934 (97.5%) of the 958 genes originally

identified as DE with B6.D2 remained DE, but status changed

for the remaining 24 genes, which were no longer detected as DE

indicating that they initially may have been false positives. Status

also changed for 36 genes originally showing no DE; with the

realigned reads, these were detected as DE with D2.B6,

indicating that allele bias may have lead to false negative results.

Finally, status changed for 5 genes originally detected as DE

D2.B6, which were not found to be differentially expressed.

Overall the number of putative false positive and false negative

differential expression calls was minimal relative to the 1,727

differentially expressed genes found by RNA-Seq. The genes that

changed status are indicated in Dataset S1.

Microarray
The Affymetrix MOE 430 2.0 microarray contains 45,037

probesets interrogating 18,461 genes annotated in Ensembl [27],

and the Illumina Mouse MouseRef-8 v2.0 microarray has 25,697

probes interrogating 16,948 genes. After analyzing each micro-

array experiment as described in the Methods, the Affymetrix

microarray detected 10,663 genes with expression above back-

ground in the striatum, and the Illumina microarray detected

9,521 genes. Next we assessed differential expression on each

microarray platform as indicated in the Methods. The Affymetrix

and Illumina microarray analyses identified 1,652 and 869

differentially expressed genes (q,0.01), respectively. Inherent to

the microarray platforms, there are often multiple probesets or

probes mapping to the same gene. Differential expression and

direction of fold change when one or more probesets or probes

exist on each microarray are summarized in Table S2 and

complete details are presented in Datasets S2 and S3 (both

described in Text S1). For comparing DE across platforms, we

used the microarray probeset or probe with the best q-value.

Presented in Datasets S2 and S3 are the probesets and probes,

their fold change, and complete annotation details.

Comparison of RNA-seq and microarray results
First, we compared the overlap of genes detected by each of the

three platforms. 7,211 genes are common to all three platforms

(Fig. 2). There are 202 genes unique to Affymetrix microarray, 529

Figure 1. Distribution of read counts per gene per lane/flowcell. Shown in A) is the distribution of non-normalized counts per gene. The
counts, however, were divided by a constant defined here as the mean of the total unique read counts in megabases (MB). This was done to facilitate
comparison of the boxplots. For B), the count values were normalized by the upper quartile corrected total counts in MB. The upper quartile
correction values were computed using edgeR [42]. Additionally both plots are shown on the log2 scale. Also note that the X-axis is labeled in the
form strain_lane_flowcell.
doi:10.1371/journal.pone.0017820.g001
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unique to Illumina microarray, and 4,179 genes detected only by

RNA-Seq (Fig. 2). The majority of these genes are protein coding,

although each platform does detect some in other Ensembl gene

categories as well, as annotated in the Datasets (S1, S2, S3).

Next we compared the differential expression across platforms.

RNA-Seq detected a total of 1,727 DE genes. The largest subset

(591 genes) of the RNA-Seq DE genes were only detected as

expressed in the RNA-Seq analyses, so evidence for their DE is

also exclusive to the RNA-Seq data. 369 and 212 of the genes

differentially expressed by RNA-Seq were detected as expressed

using the Affymetrix and Illumina microarrays, but only 51% and

31% of these genes were DE in these microarray analyses,

respectively. Figure 3 summarizes the final subset of 555 RNA-

Seq DE genes that are also detected as present on both

microarrays by at least one probeset or probe. 222 of these genes

were DE based on RNA-Seq, while both microarray platforms

detected the genes as ‘present’ but did not detect DE. This suggests

that differential expression may not extend across the 39UTR,

which is preferentially interrogated by the microarrays. 144 of

these genes were DE using all three platforms, indicating high

confidence differential expression likely across the entire gene.

Of the 555 that were compared (Fig. 3), only 13 were flagged as

having a low read count. Further the mean average log

transformed count was slightly greater in the 222 found only on

RNA-Seq compared to those found differentially expressed in at

least one of the array platforms (p = .015; two-tailed t-test)

suggesting that many of the DE genes found only in the RNA-

Seq analysis may indeed be true positives.

Discussion

The present studies used a gene-level summarization approach,

which has been shown to provide more reliable values than single

base positions [44] or smaller intervals because of the non-

uniformity observed between sequence positions that may be

attributed to random hexamer priming [45]. In agreement with

previous reports, we find that adjusting read count differences by the

total read count seems to be inadequate, but an additional

correction by the upper quartile of each lane provides a sufficient

way to normalize the data [19]. We found little evidence of gene

length bias using the edgeR package, though a relatively large effect

was found using a Poisson model. We show that there is some

potential for false positives and false negatives in comparisons of

inbred mouse strains due solely to the presence of SNPs, though the

effect on this comparison is not severe. We note that any bias that

may exist will be a function of SNP density. For more complex and

SNP dense mouse models, such as heterogenous stock [7,46], SNPs

may have a more serious impact on DE of some genes. We further

note that insertions and deletions between the two strains, which we

did not take into account, could potentially cause similar effects.

The impact of genome structure on differential expression analysis

will likely cease to be an issue for several inbred mouse strains upon

release of the sequenced genomes of the common inbred strains

being performed by Sanger [14], allowing each to be analyzed

relative to its own reference sequence and transcript models.

RNA-Seq provided more genes that were ‘‘detected,’’ that is

had reliable signal and were not impacted by SNP or annotation

issues, than either the Illumina or Affymetrix microarray

platforms. We recognize the difficulty in analytically describing a

background level for RNA-Seq and for the future recommend

additional experiments accurately measuring the abundance of

mRNA from genes with a relatively wide range of counts in the

model system of choice similar to what was done in earlier studies

[15]. Despite platform differences, we found that in general,

microarrays and RNA-Seq agreed relatively well based upon fold-

change direction and significance values with 58% of the RNA-

Seq DE genes that were interrogated on all platforms determined

to be differentially expressed in the same direction at a false

discovery rate of 0.01. The largest proportion of those genes that

were found to be DE by RNA-Seq and at least one microarray

platform were found to be DE on all three platforms. Interestingly

the Affymetrix MOE430 2.0 tended to agree with the RNA-Seq

data better than Illumina. Higher correlations between Affymetrix

and sequencing data have been observed before in the context of

the SAGE-like digital gene expression (DGE) [47].

The largest proportion of RNA-Seq DE genes interrogated by

all three platforms was represented by those that were seen to be

differentially expressed in RNA-Seq only. We found that these

genes tended to have a greater average read count relative to those

that agreed with at least one microarray platform, further

indicating the utility of RNA-Seq over these two microarray

platforms. The 144 genes that are differentially expressed in

common with the two microarray technologies may represent

instances of relatively homogenous expression across the annotat-

ed gene, as the probes from these two microarray platforms should

tend to be biased towards the 39UTR end of the gene. In this

respect genes that only agreed with one platform in terms of

differential expression or were only seen in RNA-Seq may

represent differences in transcript isoform abundances. The

variation in each of these categories illustrates an advantage of

RNA-Seq compared to microarrays in that, in this case, RNA-Seq

calculates DE across the entire gene rather than just at an

individual probe(set) location within the gene. By some estimates

there are, on average, approximately 2.5 alternative transcripts for

each mouse gene [48]. With alternative splicing in the picture,

probe location clearly impacts interpretation of microarray data.

Another potentially informative biological assessment of sensi-

tivity across platforms could be done examining the Y-chromo-

some genes across the platforms. However, review of the Ensembl

annotation utilized for the analysis in this study revealed only 20

Figure 2. Platform overlap of detection of mouse genes
expressed in striatum. For RNA-Seq: the genes that pass filters for
detection when RNA-Seq data are aligned to all genes annotated in
Ensembl. For microarray: the genes detected as present with at least
one probeset (Affymetrix) or probe (Illumina) after filtering.
doi:10.1371/journal.pone.0017820.g002
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genes annotated to be on the Y chromosome. Of these, if we

examine the probes that passed our filters for SNPs, detection

above background, and unique Ensembl mappings that were used

in our analyses, this leaves only 7 probes on the Illumina array

interrogating 5 genes on the Y chromosome and no probesets on

the Affymetrix array. We do note that of the 5 genes detected by

Illumina array, 4 of those were also detected by RNA-seq (the

single exception was at the lowest acceptable signal level on the

Illumina array). However, with so few annotated genes and such

poor coverage on the arrays, assessments using this type of assay

would not be informative at this time.

Additionally, many choices of experimental protocols currently

exist for RNA-Seq, each with their own benefits and consequences

for downstream analysis. For example to remove highly abundant

rRNA molecules, either enrichment of poly-A containing

sequences or depletion of the rRNAs has been used [49,50]. For

our RNA-Seq experiments we used a poly-A enrichment

procedure as the current rRNA depletion strategies have been

observed to be less efficient [50]. However it is possible that use of

different selection procedures may impact the agreement with

microarrays, which is an interesting topic for future research.

Although many methods for analyzing RNA-Seq data currently

exist and more continue to be produced, the most basic and

fundamental question that can be asked is whether a gene/

transcript is differentially expressed between two groups. Gene

level differential expression then forms the basis for further

experiments directed at identifying and quantifying transcript

isoforms between samples [44,51] and de novo identification of

unannotated expressed regions [15,52]. Methods exist to infer

alternative splicing and relative quantification of transcript

isoforms [44,51], and the generation of paired-end sequences

should allow greater confidence in any novel alternative splicing

events observed [53]. The use of this technology shall be pursued

in the future to assess details of alternative splicing across mouse

strains.

Supporting Information

Figure S1 Distrubution of counts from genes that were
removed relative to those remaining. The distribution of

log2 mean read counts per gene categorized by whether the gene

had a zero count in at least one lane for both the B6 and D2 strains

(right) or either had no zero counts or zero counts in at least one

lane for one of the strains (left).

(TIF)

Figure S2 Distribution of genes scaled by the total count
per lane. Boxplots of the distribution of counts per gene scaled by

the total unique read count (in megabases) for each lane.

(TIF)

Figure S3 Relationship between gene length and gene
significance for q-values computed by edgeR. Shown in A)

are the distribution of log2 gene lengths, in terms of union exon

bases relative to whether that gene was determined to be

differentially expressed at a q-value,.01 (DE) or not (Non DE).

Shown in B) is the distribution of q-values for the gene lengths

categorized by quartile of length.

(TIF)

Figure S4 Relationship between gene length and gene
significance for q-values computed using the single
factor Poisson model. Shown in A) are the distribution of

Figure 3. Platform overlap of differential expression (DE) detected by RNA-Seq. Of the 1524 genes DE by RNA-Seq data, 555 are also
detected on Affymetrix MOE 430 2.0 and Illumina MouseRef-8 v2.0. When queried on all three platforms, 144 show DE on all three platforms (5 show
DE on all three platforms, but do not agree in direction of fold change) indicating genes that are likely uniformly DE across all exons. 125 and 54 are
DE on Affymetrix and RNA-Seq or Illumina and RNA-Seq, respectively (with 3 and 2 disagreeing in direction of fold change, respectively). While
detected on all three platforms, 222 only show DE on RNA-Seq.
doi:10.1371/journal.pone.0017820.g003
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log2 gene lengths, in terms of union exon bases relative to whether

that gene was determined to be differentially expressed at a q-

value,.01 (DE) or not (Non DE). Shown in B) is the distribution of

q-values for the gene lengths categorized by quartile of length.

(TIF)

Figure S5 Relationship between the number of SNPs
per kilobase of gene length and gene differential
expression direction. The boxplot on the left (Not DE) is the

distribution of SNPs per kilobase for non differentially expressed

genes. The middle boxplot (DE B6.D2) shows the distribution for

those genes that are both differentially expressed with the

normalized count for B6 being higher than D2. Similarly the

boxplot on the right shows the distribution for those genes that are

differentially expressed with D2 showing a higher normalized read

count than B6.

(TIF)

Table S1 Summary of read mapping statistics. Shown

are the statistics in terms of reads for each lane of each flowcell

(batch). The strain column references whether the sample was

derived from the C57BL6/J (B6) or DBA2/J (D2) inbred strain of

mouse. Total reads refers to the total number of generated reads

for each lane. The remaining columns reference whether the read

was uniquely placed to a location in the genome (Uniquely

mapped), whether it mapped to more than one location (Multi-

mapped) or whether it failed to map (Non-mapped). All

realignments were performed using Bowtie [26].

(XLS)

Table S2 Microarray data agreement within platform
when one or more probesets or probes exist for a gene.
Numbers in table indicate number of genes. Differentially

expressed (DE) at q,0.01; fold change (FC); probeset refers to

both probeset for Affymetrix or probe for Illumina microarray;

same direction of fold change means that the same strain showed

higher gene expression; ‘some’ means at least one.

(XLS)

Text S1 Readme file for Datasets S1, S2, and S3 describing

column headings.

(DOC)

Dataset S1 RNA-Seq results of all genes detected and

comparisons to Affymetrix and Illumina microarray data.

(TXT)

Dataset S2 Microarray results of all probesets detected by

Affymetrix MOE 430 2.0 array in B6 and D2 mouse striatum.

(TXT)

Dataset S3 Microarray results of all probesets detected by

Illumina MouseRef-8 v2.0 array in B6 and D2 mouse striatum.

(TXT)
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